Почему технический ацетилен неприятно пахнет. Ацетилен - газ с самой высокой температурой пламени! Как синтезировался ацетилен

Ацетилен

Название этого вещества связано со словом «уксус». Сегодня это единственный широко используемый в промышленности газ, горение и взрыв которого возможны в отсутствие кислорода или других окислителей. Сгорая в кислоте, он дает очень горячее пламя — до 3100°С.

Как синтезировался ацетилен

Впервые ацетилен получил в 1836 Эдмунд Дэви, двоюродный брат знаменитого Гемфри Дэви. Он подействовал водой на карбид калия: К 2 С 2 + 2Н 2 О=С 2 Н 2 + 2КОН и получил новый газ, который назвал двууглеродистым водородом. Этот газ был, в основном, интересен химикам с точки зрения теории строения органических соединений. Один из создателей так называемой теории радикалов Юстус Либих назвал группу атомов (т.е. радикал) С 2 Н 3 ацетилом.
На латыни acetum - уксус; молекула уксусной кислоты (С 2 Н 3 О+О+Н, как записывали тогда ее формулу) рассматривалась как производное ацетила. Когда французский химик Марселен Бертло в 1855 сумел получить «двууглеродистый водород» сразу несколькими способами, он назвал его ацетиленом . Бертло считал ацетилен производным ацетила, от которого отняли один атом водорода: С 2 Н 3 - Н = С 2 Н 2 . Сначала Бертло получал ацетилен, пропуская пары этилена, метилового и этилового спирта через раскаленную докрасна трубку. В 1862 он сумел синтезировать ацетилен из элементов, пропуская водород через пламя вольтовой дуги между двумя угольными электродами. Все упомянутые методы синтеза имели только теоретическое значение, и ацетилен был редким и дорогим газом, пока не был разработан дешевый способ получения карбида кальция прокаливанием смеси угля и негашеной извести: СаО + 3С = СаС 2 + СО. Это произошло в конце XIX века.
Тогда ацетилен стали использовать для освещения . В пламени при высокой температуре этот газ, содержащий 92,3% углерода (это своеобразный химический рекорд), разлагается с образованием твердых частичек углерода, которые могут иметь в своем составе от нескольких до миллионов атомов углерода. Сильно накаливаясь во внутреннем конусе пламени, эти частички обуславливают яркое свечение пламени — от желтого до белого, в зависимости от температуры (чем горячее пламя, тем ближе его цвет к белому).
Ацетиленовые горелки давали в 15 раз больше света, чем обычные газовые фонари, которыми освещали улицы. Постепенно они были вытеснены электрическим освещением, но еще долго использовались в небольших фонарях на велосипедах, мотоциклах, в конных экипажах.
В течение длительного времени ацетилен для технических нужд (например, на стройках) получали «гашением» карбида водой. Полученный из технического карбида кальция ацетилен имеет неприятный запах из-за примесей аммиака, сероводорода, фосфина, арсина.

Ацетилен сегодня: способы получения

В промышленности ацетилен часто получают действием воды на карбид кальция.
Сейчас широко применяются методы получения ацетилена из природного газа - метана:
электрокрекинг (струю метана пропускают между электродами при температуре 1600°С и быстро охлаждают, чтобы предотвратить разложение ацетилена);
термоокислительный крекинг (неполное окисление), где в реакции используют теплоту частичного сгорания ацетилена.

Применение

Ацетилен используют:

  • для сварки и резки металлов,
  • как источник очень яркого, белого света в автономных светильниках, где он получается реакцией карбида кальция и воды,
  • в производстве взрывчатых веществ,
  • для получения уксусной кислоты, этилового спирта, растворителей, пластических масс, каучука, ароматических углеводородов.

Свойства ацетилена

В химически чистом виде ацетилен обладает слабым эфирным запахом. Технический ацетилен, благодаря наличию в нем примесей, в частности фосфористого водорода, имеет резкий специфический запах. Ацетилен легче воздуха. Газообразный ацетилен - бесцветный газ молекулярная масса - 26,038.
Ацетилен способен растворяться во многих жидкостях. Его растворимость зависит от температуры: чем ниже температура жидкости, тем больше она способна «забрать» ацетилена. В практике производства растворенного ацетилена используют ацетон, который при температуре 15 °С растворяет до 23 объемов ацетилена.
Содержание фосфористого водорода в ацетилене должно быть строго ограничено, так как в момент образования ацетилена в присутствии воздуха при высокой температуре может произойти самовоспламенение.
Ацетилен — единственный широко используемый в промышленности газ, относящийся к числу немногих соединений, горение и взрыв которых возможны в отсутствии кислорода или других окислителей.
Еще в 1895 г. А.Л.Ле Шателье обнаружил, что ацетилен, сгорая в кислоте, дает очень горячее пламя (до 3150°С), поэтому его широко используют для сварки и резки тугоплавких металлов. Сегодня применение ацетилена для газопламенной обработки металлов испытывает сильную конкуренцию со стороны более доступных горючих газов (природный газ, пропан-бутан и т.д.). Однако преимущество ацетилена — в самой высокой температуре горения. В таком пламени очень быстро расплавляются даже толстые куски стали. Именно поэтому газопламенная обработка ответственных узлов машиностроительных конструкций производится только с помощью ацетилена, который обеспечивает наивысшую производительность и качество процесса сварки.
Кроме того, ацетилен широко используется в органическом синтезе разнообразных веществ — уксусного альдегида и уксусной кислоты, синтетических каучуков (изопренового и хлоропренового), поливинилхлорида и других полимеров.

, синтез ацетилена , свойства ацетилена , воспламенение ацетилена , применение ацетилена

Название этого вещества связано со словом «уксус». Сегодня это единственный широко используемый в промышленности газ, горение и взрыв которого возможны в отсутствие кислорода или других окислителей. Сгорая в кислоте, он дает очень горячее пламя — до 3100°С.

Как синтезировался ацетилен

Впервые ацетилен получил в 1836 Эдмунд Дэви, двоюродный брат знаменитого Гемфри Дэви. Он подействовал водой на карбид калия: К 2 С 2 + Н 2 О=С 2 Н 2 + 2КОН и получил новый газ, который назвал двууглеродистым водородом. Этот газ был, в основном, интересен химикам с точки зрения теории строения органических соединений. Один из создателей так называемой теории радикалов Юстус Либих назвал группу атомов (т.е. радикал) С 2 Н 3 ацетилом.

На латыни acetum – уксус; молекула уксусной кислоты (С 2 Н 3 О+О+Н, как записывали тогда ее формулу) рассматривалась как производное ацетила. Когда французский химик Марселен Бертло в 1855 сумел получить «двууглеродистый водород» сразу несколькими способами, он назвал его ацетиленом. Бертло считал ацетилен производным ацетила, от которого отняли один атом водорода: С 2 Н 3 – Н = С 2 Н 2 . Сначала Бертло получал ацетилен, пропуская пары этилена, метилового и этилового спирта через раскаленную докрасна трубку. В 1862 он сумел синтезировать ацетилен из элементов, пропуская водород через пламя вольтовой дуги между двумя угольными электродами. Все упомянутые методы синтеза имели только теоретическое значение, и ацетилен был редким и дорогим газом, пока не был разработан дешевый способ получения карбида кальция прокаливанием смеси угля и негашеной извести: СаО + 3С = СаС 2 + СО. Это произошло в конце XIX века.

Тогда ацетилен стали использовать для освещения. В пламени при высокой температуре этот газ, содержащий 92,3% углерода (это своеобразный химический рекорд), разлагается с образованием твердых частичек углерода, которые могут иметь в своем составе от нескольких до миллионов атомов углерода. Сильно накаливаясь во внутреннем конусе пламени, эти частички обуславливают яркое свечение пламени - от желтого до белого, в зависимости от температуры (чем горячее пламя, тем ближе его цвет к белому).

Ацетиленовые горелки давали в 15 раз больше света, чем обычные газовые фонари, которыми освещали улицы. Постепенно они были вытеснены электрическим освещением, но еще долго использовались в небольших фонарях на велосипедах, мотоциклах, в конных экипажах.

В течение длительного времени ацетилен для технических нужд (например, на стройках) получали «гашением» карбида водой. Полученный из технического карбида кальция ацетилен имеет неприятный запах из-за примесей аммиака, сероводорода, фосфина РН 3 , арсина AsH 3 .

Ацетилен сегодня: способы получения

Сейчас широко применяются методы получения ацетилена из природного газа – метана:

электрокрекинг (струю метана пропускают между электродами при температуре 1600°С и быстро охлаждают, чтобы предотвратить разложение ацетилена); термоокислительный крекинг (неполное окисление), где в реакции используют теплоту частичного сгорания ацетилена.

Свойства ацетилена

В химически чистом виде ацетилен обладает слабым эфирным запахом. Технический ацетилен, благодаря наличию в нем примесей, в частности фосфористого водорода, имеет резкий специфический запах. Ацетилен легче воздуха. Газообразный ацетилен – бесцветный газ плотностью при 0 °С и 101,3 кПа (760 м рт. ст.) 1,173кг/м 3 . Молекулярная масса – 26,038.

Ацетилен способен растворяться во многих жидкостях. Его растворимость зависит от температуры: чем ниже температура жидкости, тем больше она способна «забрать» ацетилена. В практике производства растворенного ацетилена используют ацетон, который при температуре 15 °С растворяет до 23 объемов ацетилена.

Единственный широко используемый в промышленности газ, относящийся к числу немногих соединений, горение и взрыв которых возможны в отсутствии кислорода или других окислителей.

Еще в 1895 г. А.Л.Ле Шателье обнаружил, что ацетилен, сгорая в кислоте, дает очень горячее пламя (до 3150°С), поэтому его широко используют для сварки и резки тугоплавких металлов. Сегодня применение ацетилена для газопламенной обработки металлов испытывает сильную конкуренцию со стороны более доступных горючих газов (природный газ, пропан–бутан и т.д.). Однако преимущество ацетилена - в самой высокой температуре горения. В таком пламени очень быстро расплавляются даже толстые куски стали. Именно поэтому газопламенная обработка ответственных узлов машиностроительных конструкций производится только с помощью ацетилена, который обеспечивает наивысшую производительность и качество процесса сварки.

Кроме того, ацетилен широко используется в органическом синтезе разнообразных веществ - уксусного альдегида и уксусной кислоты, синтетических каучуков (изопренового и хлоропренового), поливинилхлорида и других полимеров.

Ацетилен химическое соединение углерода и водорода. легче воздуха, 1 м 3 ацетилена при 20°С и 760 мм рт. ст. плотность ацетилена равна 1,091 кг/м 3 . Плотность по отношению к воздуху 0,9. Критическая температура 35,9°С и критическое давление 61,6 кгс/см 2 . При сгорании с он дает пламя с наиболее высокой температурой, которая достигает 3200°С, что объясняется его эндотермичностью (другие углеводороды экзотермичны, т. е. при распаде поглощают тепло). Химическая формула - C 2 H 2 , структурная формула Н-С=С-Н.

При нормальном давлении и температуре от -82,4°С (190,6 К) до -84,0°С (189 К) ацетилен переходит в жидкое состояние, а при температуре -85°С (188 К) затвердевает, образуя кристаллы плотностью 0,76 кг/м 3 . Жидкий и твердый ацетилен легко взрывается от трения, механического или гидравлического удара и действия детонатора. Технический ацетилен при нормальных давлении и температуре представляет собой бесцветный газ с резким специфическим чесночным запахом из-за содержащихся в нем примесей в виде сернистого водорода, аммиака, фосфористого водорода и др.

В 1836 г. в Бристоле на заседании Британской ассоциации Эдмунд Дэви (Edmund Davy), профессор химии Дублинского Королевского общества и двоюродный брат Гемфри Дэви (Humphry Davy), сообщил:

... При попытке получить калий, сильно нагревая смесь прокаленного винного камня с древесным углем в большом железном сосуде, я получил черное вещество, которое легко разлагалось водой и образовывало газ, оказавшийся новым соединением углерода и водорода. Этот газ горит на воздухе ярким пламенем, более густым и светящимся даже сильнее, чем пламя маслородного газа (этилена). Если подача воздуха ограничена, горение сопровождается обильным отложением сажи. В контакте с хлором газ мгновенно взрывается, причем взрыв сопровождается большим красным пламенем и значительными отложениями сажи... Дистиллированная вода поглощает около одного объема нового газа, однако при нагревании раствора газ выделяется, по-видимому, не изменяясь... Для полного сгорания нового газа необходимо 2,5 объема кислорода. При этом образуются два объема и вода, которые являются единственными продуктами горения... Газ содержит столько же углерода, что и маслородный газ, но вдвое меньше водорода... Он удивительно подойдет для целей искусственного освещения, если только его удастся дешево получать.

Дэви получил карбид калия К 2 С 2 и обработал его водой.

В статье мы писали о том, что его «двууглеродистый » впервые был назван ацетиленом французским химиком Пьером Эженом Марселеном Бертло (Marcellin Berthelot) в 1860 г. Только через 60 лет после открытия Дэви предсказанное им использование ацетилена для освещения явилось первым толчком для его промышленного получения.

Для полного сгорания 1 м 3 ацетилена по реакции: С 2 Н 2 + 2,5O 2 =2СO 2 + Н 2 O + Q 1

требуется теоретически 2,5 м 3 кислорода или = 11,905 м 3 воздуха. При этом выделяется тепло Q 1 ≈ 312 ккал/моль. Высшая 1 м 3 ацетилена при 0°C и 760 мм рт. ст., определенная в газовом калориметре, составляет Q В = 14000 ккал/м 3 (58660 кДж/м 3), что соответствует расчетной:

312×1,1709×1000/26,036 = 14000 ккал/м 3

Низшая теплотворная способность при тех же условиях может быть принята Q H = 13500 ккал/м 3 (55890 кДж/м 3).

Практически при сжигании - ацетилена в горелках при восстановительном пламени в горелку подается не 2,5 м 3 кислорода на 1 м 3 ацетилена, а всего лишь от 1 до 1,2 м 3 у что примерно соответствует неполному сгоранию по реакции:

С 2 H 2 + О 2 = 2СО + H 2 + Q 2

где Q2 ≈ 60 ккал/моль или 2300 ккал/кг ацетилена. Остальные 1,5-1,3 м 3 кислорода поступают в пламя из окруающего воздуха, в результате чего в наружной оболочке пламени протекает реакция:

2СО + H 2 + 1,5О 2 = 2СO 2 + H 2 O + Q 3

Реакция неполного горения протекает на внешней оболочке светящегося внутреннего конуса пламени, причем под влиянием высокой температуры на внутренней поверхности конуса происходит распад ацетилена на его составляющие по реакции:

С 2 H 2 = 2С + H 2 + Q 4

где Q 4 ≈54 ккал/моль или 2070 ккал/кг ацетилена.

Таким образом, общая полезная теплопроизводительность пламени ацетилена применительно к сварочным процессам представляет собой сумму тепла, выделяемого при распаде ацетилена, и тепла, выделяемого при неполном сгорании, что составляет Q4 + Q2 = 2070 + 2300 = 4370 ккал/кг или 4370×1,1709 ≈ 5120 ккал/м 3 .

Данные зависимостей скорости воспламенения и температуры пламени и от содержания в ней ацетилена представлены ниже в таблице.

Необходимо понимать, что полное сгорание ацетилено-воздушной смеси достигается при наличии в ней не более 1×100/(1+11,905)=7,75% ацетилена (так называемая стехиометрическая смесь). При этом продуктами реакции являются только (СО 2) и вода (H 2 О). При содержании ацетилена более 17,37% в виде сажи выделяется свободный углерод.

С увеличение процентного содержание ацетила выделение сажи также возрастает (коптящее пламя), а при 81% ацетилена - процесс горения прекращается или не возникает.

Ацетилен выпускают по растворенным и газообразным. Хранят и транспортируют его в растворенном состоянии в специальных стальных по , заполненных пористой, пропитанной ацетоном массой (см. статью . Баллоны окрашены в серый цвет и надписью красными буквами «АЦЕТИЛЕН» на верхней цилиндрической части .

Максимальное давление ацетилена при заполнении баллона составляет 2,5 МПа (25 кгс/см 2), при отстое и охлаждении баллона до 20°С оно снижается до 1,9 МПа (19 кгс/см 2). При этом давлении в 40-литровый баллон вмещается 5-5,8 кг ацетилена по массе (4,6-5,3 м 3 газа при 20°С и 760 мм рт. ст.).

Давление ацетилена в полностью наполненном баллоне изменяется при изменении температуры следующим образом.

ОПРЕДЕЛЕНИЕ

Ацетилен (этин) - газ без цвета и запаха, обладает слабым наркотическим действием (строение молекулы показано на рис. 1).

Мало растворим в воде и очень хорошо в ацетоне. В виде ацетонового раствора его хранят в стальных баллонах, заполненных каким-нибудь инертным пористым материалом. Смеси ацетилена с воздухом взрывоопасны.

Рис. 1. Строение молекулы ацетилена.

Таблица 1. Физические свойства ацетилена.

Получение ацетилена

Выделяют промышленные и лабораторные способы получения ацетилена. Так, в промышленности ацетилен получают путем высокотемпературного крекинга метана:

2CH 4 → СH≡CH +3H 2 .

В лаборатории ацетилен получают гидролизом карбида кальция:

CaC 2 +2H 2 O = Ca(OH) 2 + C 2 H 2 .

Кроме вышеперечисленных реакций, для получения ацетилена используют реакции дегидрирования алканов и алкенов:

CH 3 -CH 3 → СH≡CH +2H 2 ;

CH 2 =CH 2 → СH≡CH +H 2 .

Химические свойства ацетилена

Ацетилен вступает в реакции присоединения, протекающие по нуклеофильному механизму, такие как:

— гидрирование

СH≡CH +H 2 O→ → CH 3 -CH=O (H 2 SO 4 (18%), t = 90 o C);

— галогенирование

СH≡CH +Br 2 →CHBr=CHBr + Br 2 →CHBr 2 -CHBr 2 ;

— гидрогалогенирование

СH≡CH +HСl→ CH 2 =CHCl + HCl → CH 3 -CHCl 2 .

Кроме этого ацетилен способен образовывать соли при взаимодействии с активными металлами (1) и оксидом серебра (2):

2СH≡CH +2Na→2 СH≡C-Na + H 2 (1);

СH≡CH + Ag 2 O→ Ag- С≡C-Ag↓ + H 2 O (2).

Он способен тримеризоваться:

3C 2 H 2 → C 6 H 6 (t = 600 o C, kat = C active).

Применение ацетилена

Ацетилен является исходным продуктом для многих важнейших химических производств. Например, из ацетилена получают различные галогенпроизводные, такие как тетрахлорэтан и трихлорэтилен, являющиеся хорошими растворителями, а также винилхлорид, служащий мономером для получения поливинилхлорида. Кроме этого ацетилен используется для получения синтетических каучуков.

Примеры решения задач

ПРИМЕР 1

Задание Эквимолекулярная смесь ацетилена и формальдегида полностью реагирует с 69,6 г Ag 2 O, растворенного в аммиаке. Определите состав исходной смеси.
Решение Запишем уравнения реакций, указанных в условии задачи:

HC≡CH + Ag 2 O → AgC≡Cag + H 2 O (1);

H-C(O)H + 2 Ag 2 O → CO 2 + H 2 O + 4Ag (2).

Рассчитаем количество вещества оксида серебра (I):

n(Ag 2 O) = m(Ag 2 O) / M(Ag 2 O);

M(Ag 2 O) = 232 г/моль;

n(Ag 2 O) = 69,6 / 232 = 0,3 моль.

По уравнению (2) количество вещества формальдегида будет равно 0,1 моль. По условию задачи смесь эквимолекулярна, следовательно, ацетилена тоже будет 0,1 моль.

Найдем массы веществ, составляющих смесь:

M(HC≡CH) = 26 г/моль;

M(H-C(O)H) = 30 г/моль;

m(HC≡CH) = 0,1 × 26 = 2,6 г;

m(H-C(O)H) = 0,1 × 30 = 3 г.

Ответ Масса ацетилена равна 2,6 г, формальдегида - 3 г.

ПРИМЕР 2

Задание При пропускании смеси пропана и ацетилена через склянку с бромной водой масса склянки увеличилась на 1,3 г. При полном сгорании такого же количества исходной смеси углеводородов выделилось 14 л (н.у.) оксида углерода (IV). Определите массовую долю пропана в исходной смеси.
Решение При пропускании смеси пропана и ацетилена через склянку с бромной водой происходит поглощение ацетилена. Запишем уравнение химической реакции, соответствующее этому процессу:

НC ≡ СH + 2Вr 2 → НСВr 2 -СНВr 2 .

Таким образом, значение, на которое увеличилась масса склянки (1,3 г) представляет собой массу ацетилена. Найдем количество вещества ацетилена (молярная масса - 26 г/моль):

n (C 2 H 2) = m (C 2 H 2) / M (C 2 H 2);

n (C 2 H 2) = 1,3/26 = 0,05 моль.

Запишем уравнение реакции сгоранияацетилена:

2С 2 Н 2 + 5О 2 = 4СО 2 + 2Н 2 О.

Согласно уравнению реакции, в неё вступило 2 моль ацетилена, однако, известно, что 0,05 моль из этого количества поглотилось бромной водой. Т.е. выделилось:

2-0,05 = 0,1 моль СО 2 .

Найдем общее количество оксида углерода (IV):

n sum (CO 2) = V (CO 2) / V m ;

n sum (CO 2) = 14/22,4 = 0,625 моль.

Запишем уравнение реакции сгорания пропана:

С 3 Н 8 + 5О 2 = 3СO 2 + 4Н 2 О.

Учитывая, что в реакции сгорания ацетилена выделилось 0,1 моль оксида углерода (IV), количество вещества оксида углерода (IV), выделившееся в ходе сгорания пропана равно:

0,625 — 0,1 = 0,525 моль СО 2 .

Найдем количество вещества пропана, вступившего в реакцию горения. Согласно уравнению реакции n(CO 2) : n(С 3 Н 8) = 3: 1, т.е.

n(С 3 Н 8) = n(CO 2) / 3 = 0,525/3 = 0,175 моль.

Вычислим массу пропана (молярная масса 44 г/моль):

m(С 3 Н 8) = n(С 3 Н 8) ×M(С 3 Н 8);

m(С 3 Н 8) = 0,175 × 44 = 7,7 г.

Тогда, общая масса смеси углеводородов составит:

m mixture = m(C 2 H 2) + m(С 3 Н 8) = 1,3+7,7 = 9,0 г.

Найдем массовую долю пропана в смеси:

ω = m / m mixture × 100%;

ω(С 3 Н 8) = m(С 3 Н 8) / m mixture × 100%;

ω(С 3 Н 8) =7,7/9,0× 100% = 0,856 × 100%= 85,6%.

Ответ Массовая доля пропана 85,6%.

Чистый ацетилен в обычном состоянии представляет собой бесцветный газ, лишённый запаха, отлично растворяется в ацетоне, намного хуже - в воде. Обычно используется технический ацетилен, который вследствие содержания некоторых примесей в составе имеет резкий запах. Закипает при температуре 83,6°C, тройная точка наступает при t=80,55°C (давление - 1.265 атм), критическая точка при t=35,18°C (давление - 61,1 атм).


Ацетиленовый газ довольно нестабилен, что требует соблюдения техники безопасности во время работы с ним. Становится взрывоопасен при нагревании до 500°C, при сжатии до давления 1,4 атм, а также при ударе. На открытом воздухе легко возгорает, поэтому в местах хранения исключены источники открытого огня: мельчайшая искра, включающая также искру от статического электричества, спровоцирует возгорание. Хранится в баллонах со спецматериалом, поры которого пропитаны ацетоном.


Так как молекулы ацетилена имеют тройную связь атомов углерода, газ выделяет достаточно большое количество энергии при сгорании - 14000 ккал/м³ (50,4 МДж/Кг). В соединении с водой в совокупности с солями катализаторов (например, ртути) ацетилен согласно реакции Кучерова образует уксусный альдегид. При наличии графита и t=400°C полимеризуется в бензол, также может полимеризоваться в другие органические вещества.


Ацетилен имеет некоторые свойства, характерные для кислот вследствие того, что содержащиеся в его молекулах атомы водорода способны отщепляться как протоны. Таким образом ацетилен может образовать осадок с солями серебра и меди, который не будет растворяться, и вытесняет метан из метилмагнийбромида.


Использование ацетиленового газа:

  • работа с металлом (нарезке, сварочных работах);
  • изготовление взрывчатки;
  • плазменная атомизация - в атомно-абсорбционной спектрофотометрии;
  • для яркого света, используемого в светильниках, и получаемого вследствие реакции воды с кальций карбидом;
  • в моторах ракет, в паре с аммиаком;
  • образование технического углерода;
  • изготовление пластика, каучука, этанола, растворителей, ароматических углеводородов.

Техника безопасности


Вследствие того, что ацетилен при температуре от 500°C/давлении от 0,2 МПа взрывается, имеет КПВ 2,3-80,7 % и самовоспламеняется при t=335°C , он требует соблюдения некоторых условий при работе. Уменьшить вероятность взрыва можно в случае разбавления ацетилена другими газами.

1. Ацетилен нельзя использовать в газометрах


Это обусловлено его высокой взрывоопасностью в соединении с кислородом, причем в разных концентрациях, а также плохой водорастворимостью.


2. Не хранить в баллонах, состоящих частично или полностью из меди.


Ацетилены меди и серебра, возникающие при сколько-нибудь длительном контакте ацетилена соответственно с медью или серебром, взрывоопасны и нестойки к механическим ударам и изменениям температуры.


3. Норма ПДК м.р. = ПДК с.с. = 1,5 мг/м3


Такая норма установлена гигиеническим нормативом ГН «Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе населённых мест» из-за некоторой токсичности ацетилена. При этом ПДК р.з. (рабочей зоны) не имеет нормированного значения из-за того, что концентрация распределения пламени в воздухе слишком разнится - 2,5-100 %.


4. Хранение и перевозка ацетилена производится в белых стальных баллонах, маркированных литерой «А» красного цвета в виде ацетонового раствора, находящегося под давлением 1,5-2,5 МПа. Баллоны изнутри выложены пористым веществом - к примеру, древесным углем.

Ацетилен образуется путём разложения кальций карбида в водой в специальном аппарате, называемом ацетиленовым генератором. Согласно ГОСТу, ацетиленовые генераторы, производящие ацетилен для работы с металлом, разделяются на несколько групп.

Классификация ацетиленовых генераторов


1. По принципу действия:

  • стационарные (производят 5—160м3/ч ацетилена),
  • передвижные (производят 0,5—3м3/ч ацетилена).

2. По объёму произведённого вещества в м3/ч - 0,5; 0,75; 1,25; 2,5; 3; 5; 10; 20; 40; 80.


3. По давлению, под которым выходит вырабатываемый ацетилен:

  • с низким давлением до 0,1 кгс/см2,
  • со средним давлением - от 0,1 до 0,7кгс/см2,
  • с высоким давлением - от 0,7 до 1,5кгс/см2.

4. По тому, каким именно образом кальций карбид вступает в реакцию с водой:

  • система КВ, или "карбид в воду", где в воду, находящуюся в специальном рекреационном контейнере, подаётся необходимое количество кальций карбида, который там же и разлагается, взаимодействуя с водой;
  • система ВК, или "вода на карбид", где наоборот, в специальной рекреационной камере находится карбид кальция, и он разлагается про подаче в камеру необходимого количества воды;
  • система ВВ, или "вытеснение воды", где кальций карбид разлагается при его контакте с водой в рекреационной камере, и соприкосновение этих веществ зависит от того, какой в камере уровень воды, и насколько она вытесняется выделяющимся ацетиленовым газом.
Поделиться