Определение плотности топлив.

Любая жидкость обладает собственными неповторимыми свойствами и характеристиками. В физике принято рассматривать ряд явлений, которые связаны с этим специфическими характеристиками.

Жидкости обычно разделяют на две основные категории:

  • капельные или малосжимаемые;
  • газообразные или сжимаемые.

Рисунок 2. Вычисление плотности жидкости. Автор24 - интернет-биржа студенческих работ

Эти классы жидкостей имеют принципиальные различия между собой. Так капельные жидкости существенно отличаются от газообразных. Они обладают определенным объемом. Его величина не будет изменяться под действием каких-либо внешних сил. В газообразном состоянии жидкости могут занимать весь объем, который у них имеется. Также подобный класс жидкости может в значительной степени изменять свой собственный объем, если на него влияют определенные внешние силы.

У жидкостей любого типа есть три свойства, с которыми они не могут расстаться:

  • плотность;
  • вязкость;
  • сила поверхностного натяжения.

Эти свойства способны влиять на многочисленные законы их движения, поэтому они имеют главное значение в процессе изучения и применения знаний на практике.

Понятие плотности жидкости

Масса, которая заключена в единицу объема, называется плотностью жидкости. Если поступательно повышать единицу давления, то объем воды будет стремиться к уменьшению от первоначальной его величины. Разница значений составляет примерно 1 к 20000. Такой же порядок чисел будет иметь коэффициент объемного сжатия для иных капельных жидкостей. Как правило, на практике установлено, что серьезных изменений давления не происходит, поэтому принято не использовать на практике сжимаемость воды при расчете удельного веса и плотности в зависимости от давления.

Рисунок 3. Плотности различных жидкостей. Автор24 - интернет-биржа студенческих работ

Для расчетов плотности жидкости вводится понятие температурного расширения для капельных жидкостей. Оно характеризуется коэффициентом температурного расширения, которое выражает увеличение объема жидкости при увеличении температурного режима на 10 градусов по шкале Цельсия.

Таким образом, формируется показатель плотности для определенной жидкости. Ее принято учитывать при различном атмосферном давлении, температурных показателях. Выше представлена таблица, которая показывает плотности основных видов жидкостей.

Плотность воды

Самой распространенной и привычной человеку жидкостью является вода. Рассмотрим основные характеристики по плотности и вязкости этого вещества. Плотность воды в естественных условиях будет равна 1000 кг/м3. Этот показатель применяется для дистиллированной воды. Для морской воды значение по плотности чуть выше - 1030 кг/м3. Подобная величина не является конечной и плотно связана с температурой. Идеальные показатели можно зафиксировать при температуре около 4 градусов Цельсия. Если производить вычисления над кипящей водой при температуре 100 градусов, то плотность довольно сильно сократится и составит примерно 958 кг/м3. Установлено, что обычно в процессе нагревания любых жидкостей их плотность уходит в сторону уменьшения.

Плотность воды также довольно близка к ряду распространенных продуктов питания. Ее можно сравнить с вином, раствором уксуса, обезжиренным молоком, сливками, сметаной. Некоторые виды продуктов имеют более высокие показатели по плотности. Однако немало среди продуктов питания и напитков таких, которые существенно могут уступить классической воде. Среди них обычно выделяют спирты, а также нефтепродукты, включая мазут, керосин и бензин.

Если необходимо рассчитать плотность некоторых газов, тогда используется уравнения состояния идеальных газов. Это необходимо в тех случаях, когда поведение реальных газов существенно отличается от поведения идеальных газов и процесса сжижения не происходит.

Объем газа обычно зависит значений давления и температуры. Разности давлений, которые вызывают существенные изменения плотности газов, возникают при движении на больших скоростях. Обычно несжимаемый газ проявляется на скоростях, которые превышаю сто метров в секунду. Рассчитывается соотношение скорости движения жидкости со скоростью звука. Это позволяет соотносить многие показатели при подтверждении плотности того или иного вещества.

Вязкость жидкостей

Еще одним свойством любой жидкости является вязкость. Это такое состояние жидкости, которое способно оказывать сопротивление сдвига или иной внешней силы. Известно, что реальные жидкости обладают подобными свойствами. Она определяется в виде внутреннего трения при относительном перемещении частиц жидкости, находящихся рядом.

Существуют не только легко подвижные жидкости, но и более вязкие вещества. К первой группе обычно относят воздух и воду. У тяжелых масел сопротивление происходит на ином уровне. Вязкость может охарактеризовать степенью текучести жидкости. Также такой процесс называют подвижностью ее частиц, и он зависит от плотности вещества. Вязкость жидкостей в лабораторных условиях определяют вискозиметрами. Если вязкость жидкости в большей степени зависит только от прилагаемой температуры, то принято различать несколько основных параметров веществ. При увеличении температуры вязкости капельной жидкости стремится к уменьшению. Вязкость газообразной жидкости при схожих условиях только возрастает.

Сила внутреннего трения в жидкостях возникает при пропорциональности скорости градиента к площади слоев, которые осуществляют трение. При этом трение в жидкостях принято различать от процесса трения в иных телах твердого типа. В твердых телах сила трения будет зависеть от нормального давления, а не от площади трущихся поверхностей.

Аномальные и идеальные жидкости

Различают два вида жидкостей, исходя из их внутренних характеристик:

  • аномальные жидкости;
  • идеальные жидкости.

Определение 1

Аномальными жидкостями называют такие жидкости, которые не подчиняются закону вязкости Ньютона. Подобные жидкости способны начинать движение после момента касательного напряжения при прохождении предельного порога по минимуму. Такой процесс также называют начальным напряжением сдвига. Эти жидкости не могут двигаться при небольших напряжениях и испытывают упругие деформации.

К идеальным жидкостям относят воображаемую жидкость, которая не подвержена любым сжатиям и деформациям, то есть она лишена свойства вязкости. Для ее расчета необходимо вводить определенные поправочные коэффициенты.

Одним из трех агрегатных состояний существования веществ является жидкое. Частицы жидкости расположены весьма компактно, что обусловливает их высокую плотность (плотности некоторых жидкостей приведены в табл. 1) и малую сжимаемость по сравнению с газами. Структура и внутреннее строение жидкостей характеризуются упорядоченным расположением частиц. Вследствие относительно высокой подвижности частиц жидкости их упорядоченность ограничивается небольшими островками (агрегатами или кластерами), причем последние ориентированы друг относительно друга беспорядочно и часть пространства между ними остается не заполненной веществом. Эти образования нестабильны, связи в них постоянно разрушаются и вновь возникают. При этом происходит обмен частиц между соседними кластерами. Таким образом, в структурном отношении для жидкости характерно наличие лабильного (подвижного) равновесия, обусловленного относительной свободой перемещения частиц. Образование лабильных агрегатов в жидкости наблюдается даже при температурах, намного превышающих температуру кристаллизации. С понижением температуры стабильность таких агрегатов увеличивается и вблизи температуры кристаллизации жидкости имеют квазикристаллическое строение, т.е. возрастает количество агрегатов, они становятся больше по размерам и начинают определенным образом ориентироваться друг относительно друга.

Таблица 1. Плотности некоторых жидкостей.

Жидкости изотропны, т.е. их физические свойства одинаковы в различных направлениях. При любых, сколь угодно малых усилиях жидкости легко изменяют свою форму, что проявляется в текучести. Естественно, что текучесть (или обратная ей величина — вязкость) для различных жидкостей меняется в широких пределах. Существуют жидкости, обладающие весьма высокой вязкостью (например, некоторые битумы), вследствие чего при резком приложении нагрузки — ударе — они разрушаются подобно твердым телам. В то же время постепенное и непрерывное увеличение нагрузки позволяет обнаружить у них текучесть.

Примеры решения задач

ПРИМЕР 1

Задание Вычислите объем воды и массу поваренной соли NaCl, которые потребуются для приготовления 250 мл 0,7 М раствора. Плотность раствора принять равной 1 г/см 3 . Какова массовая доля хлорида натрия в таком растворе?
Решение Молярная концентрация раствора равная 0,7 М свидетельствует о том, что в 1000 мл раствора содержится 0,7 моль соли. Тогда, можно узнать, количество вещества соли в 250 мл этого раствора:

n(NaCl) = V solution (NaCl) × C M (NaCl);

n(NaCl) = 250 × 0,7 / 1000 = 0,175 моль.

Найдем массу 0,175 моль хлорида натрия:

M(NaCl) = Ar(Na) + Ar(Cl) = 23 + 35,5 = 58,5 г/моль.

m(NaCl) = n(NaCl) × M(NaCl);

m(NaCl) = 0,175 × 58,5 = 10,2375 г.

Вычислим массу воды, необходимую для получения 250 мл 0,7 М раствора поваренной соли:

r = m solution / V;

m solution = V ×r = 250 × 1 = 250 г.

m(H 2 O) = 250 - 10,2375 = 239,7625 г.

Ответ Масса воды равна 239,7625 г, объем - этому же значению, поскольку плотность воды равна 1 г/см 3 .

ПРИМЕР 2

Задание Вычислите объем воды и массу нитрата калия KNO 3 , которые потребуются для приготовления 150 мл 0,5 М раствора. Плотность раствора принять равной 1 г/см 3 . Какова массовая доля нитрата калия в таком растворе?
Решение Молярная концентрация раствора равная 0,5 М свидетельствует о том, что в 1000 мл раствора содержится 0,7 моль соли. Тогда, можно узнать, количество вещества соли в 150 мл этого раствора:

n(KNO 3) = V solution (KNO 3) × C M (KNO 3);

n(KNO 3) = 150 × 0,5 / 1000 = 0,075 моль.

Найдем массу 0,075 моль нитрата калия:

M(KNO 3) = Ar(K) + Ar(N) + 3×Ar(O) = 39 + 14 + 3×16 = 53 + 48 = 154 г/моль.

m(KNO 3) = n(KNO 3) × M(KNO 3);

m(KNO 3) = 0,075 × 154 = 11,55 г.

Вычислим массу воды, необходимую для получения 150 мл 0,5 М раствора нитрата калия:

r = m solution / V;

m solution = V ×r = 150 × 1 = 150 г.

m(H 2 O) = m solution - m(NaCl);

m(H 2 O) = 150 - 11,55 = 138,45 г.

Ответ Масса воды равна 138,45 г, объем - этому же значению, поскольку плотность воды равна 1 г/см 3 .

Приведена таблица плотности жидкостей при различных температурах и атмосферном давлении для наиболее распространенных жидкостей. Значения плотности в таблице соответствует указанным температурам, допускается интерполяция данных.

Множество веществ способны находится в жидком состоянии. Жидкости – вещества различного происхождения и состава, которые обладают текучестью, — они способны изменять свою форму под действием некоторых сил. Плотность жидкости – это отношение массы жидкости к объёму, который она занимает.

Рассмотрим примеры плотности некоторых жидкостей. Первое вещество, которое приходит в голову при слове «жидкость» — это вода. И это вовсе не случайно, ведь вода является самой распространённой субстанцией на планете, и поэтому её можно принять за идеал.

Равна 1000 кг/м 3 для дистиллированной и 1030 кг/м 3 для морской воды. Поскольку данная величина тесно взаимосвязана с температурой, стоит отметить, что данное «идеальное» значение получено при +3,7°С. Плотность кипящей воды будет несколько меньше – она равна 958,4 кг/м 3 при 100°С. При нагревании жидкостей их плотность, как правило, уменьшается.

Плотность воды близка по значению различным продуктам питания. Это такие продукты, как: раствор уксуса, вино, 20%-ные сливки и 30%-ная сметана. Отдельные продукты оказываются плотнее, к примеру, яичный желток — его плотность равна 1042 кг/м 3 . Плотнее воды оказывается, например, : ананасовый сок – 1084 кг/м 3 , виноградный сок – до 1361 кг/м 3 , апельсиновый сок — 1043 кг/м 3 , кока-кола и пиво – 1030 кг/м 3 .

Многие вещества по плотности уступают воде. К примеру, спирты оказываются гораздо легче воды. Так плотность равняется 789 кг/м 3 , бутилового – 810 кг/м 3 , метилового — 793 кг/м 3 (при 20°С). Отдельные виды топлива и масла обладают ещё более низкими значениями плотности: нефть — 730-940 кг/м 3 , бензин — 680-800 кг/м 3 . Плотность керосина составляет около 800 кг/м 3 , — 879 кг/м 3 , мазута – до 990 кг/м 3 .

Плотность жидкостей — таблица при различных температурах
Жидкость Температура,
°С
Плотность жидкости,
кг/м 3
Анилин 0…20…40…60…80…100…140…180 1037…1023…1007…990…972…952…914…878
(ГОСТ 159-52) -60…-40…0…20…40…80…120 1143…1129…1102…1089…1076…1048…1011
Ацетон C 3 H 6 O 0…20 813…791
Белок куриного яйца 20 1042
20 680-800
7…20…40…60 910…879…858…836
Бром 20 3120
Вода 0…4…20…60…100…150…200…250…370 999,9…1000…998,2…983,2…958,4…917…863…799…450,5
Вода морская 20 1010-1050
Вода тяжелая 10…20…50…100…150…200…250 1106…1105…1096…1063…1017…957…881
Водка 0…20…40…60…80 949…935…920…903…888
Вино крепленое 20 1025
Вино сухое 20 993
Газойль 20…60…100…160…200…260…300 848…826…801…761…733…688…656
20…60…100…160…200…240 1260…1239…1207…1143…1090…1025
ГТФ (теплоноситель) 27…127…227…327 980…880…800…750
Даутерм 20…50…100…150…200 1060…1036…995…953…912
Желток яйца куры 20 1029
Карборан 27 1000
20 802-840
Кислота азотная HNO 3 (100%-ная) -10…0…10…20…30…40…50 1567…1549…1531…1513…1495…1477…1459
Кислота пальмитиновая C 16 H 32 O 2 (конц.) 62 853
Кислота серная H 2 SO 4 (конц.) 20 1830
Кислота соляная HCl (20%-ная) 20 1100
Кислота уксусная CH 3 COOH (конц.) 20 1049
Коньяк 20 952
Креозот 15 1040-1100
37 1050-1062
Ксилол C 8 H 10 20 880
Купорос медный (10%) 20 1107
Купорос медный (20%) 20 1230
Ликер вишневый 20 1105
Мазут 20 890-990
Масло арахисовое 15 911-926
Масло машинное 20 890-920
Масло моторное Т 20 917
Масло оливковое 15 914-919
(рафинир.) -20…20…60…100…150 947…926…898…871…836
Мед (обезвоженный) 20 1621
Метилацетат CH 3 COOCH 3 25 927
20 1030
Молоко сгущенное с сахаром 20 1290-1310
Нафталин 230…250…270…300…320 865…850…835…812…794
Нефть 20 730-940
Олифа 20 930-950
Паста томатная 20 1110
Патока вареная 20 1460
Патока крахмальная 20 1433
ПАБ 20…80…120…200…260…340…400 990…961…939…883…837…769…710
Пиво 20 1008-1030
ПМС-100 20…60…80…100…120…160…180…200 967…934…917…901…884…850…834…817
ПЭС-5 20…60…80…100…120…160…180…200 998…971…957…943…929…902…888…874
Пюре яблочное 0 1056
(10%-ный) 20 1071
Раствор поваренной соли в воде (20%-ный) 20 1148
Раствор сахара в воде (насыщенный) 0…20…40…60…80…100 1314…1333…1353…1378…1405…1436
Ртуть 0…20…100…200…300…400 13596…13546…13350…13310…12880…12700
Сероуглерод 0 1293
Силикон (диэтилполисилоксан) 0…20…60…100…160…200…260…300 971…956…928…900…856…825…779…744
Сироп яблочный 20 1613
Скипидар 20 870
(жирность 30-83%) 20 939-1000
Смола 80 1200
Смола каменноугольная 20 1050-1250
Сок апельсиновый 15 1043
Сок виноградный 20 1056-1361
Сок грейпфрутовый 15 1062
Сок томатный 20 1030-1141
Сок яблочный 20 1030-1312
Спирт амиловый 20 814
Спирт бутиловый 20 810
Спирт изобутиловый 20 801
Спирт изопропиловый 20 785
Спирт метиловый 20 793
Спирт пропиловый 20 804
Спирт этиловый C 2 H 5 OH 0…20…40…80…100…150…200 806…789…772…735…716…649…557
Сплав натрий-калий (25%Na) 20…100…200…300…500…700 872…852…828…803…753…704
Сплав свинец-висмут (45%Pb) 130…200…300…400…500..600…700 10570…10490…10360…10240…10120..10000…9880
жидкое 20 1350-1530
Сыворотка молочная 20 1027
Тетракрезилоксисилан (CH 3 C 6 H 4 O) 4 Si 10…20…60…100…160…200…260…300…350 1135…1128…1097…1064…1019…987…936…902…858
Тетрахлордифенил C 12 H 6 Cl 4 (арохлор) 30…60…150…250…300 1440…1410…1320…1220…1170
0…20…50…80…100…140 886…867…839…810…790…744
Топливо дизельное 20…40…60…80…100 879…865…852…838…825
Топливо карбюраторное 20 768
Топливо моторное 20 911
Топливо РТ 836…821…792…778…764…749…720…692…677…648
Топливо Т-1 -60…-40…0…20…40…60…100…140…160…200 867…853…824…819…808…795…766…736…720…685
Топливо Т-2 -60…-40…0…20…40…60…100…140…160…200 824…810…781…766…752…745…709…680…665…637
Топливо Т-6 -60…-40…0…20…40…60…100…140…160…200 898…883…855…841…827…813…784…756…742…713
Топливо Т-8 -60…-40…0…20…40…60…100…140…160…200 847…833…804…789…775…761…732…703…689…660
Топливо ТС-1 -60…-40…0…20…40…60…100…140…160…200 837…823…794…780…765…751…722…693…879…650
Углерод четыреххлористый (ЧХУ) 20 1595
Уроторопин C 6 H 12 N 2 27 1330
Фторбензол 20 1024
Хлорбензол 20 1066
Этилацетат 20 901
Этилбромид 20 1430
Этилиодид 20 1933
Этилхлорид 0 921
Эфир 0…20 736…720
Эфир Гарпиуса 27 1100

Низкими показателями плотности отличаются такие жидкости, как: скипидар 870 кг/м 3 ,

Плотность керосина в зависимости от температуры

Приведена таблица значений плотности жидкого керосина марки Т-1 в зависимости от температуры. Величина плотности керосина дана в размерности кг/м 3 при различных температурах в интервале от 20 до 270°С.

Плотность этого определяется составом и качеством производства отдельных его партий при нефтепереработке. Она увеличивается с ростом содержания в его составе тяжелых углеводородов.

Плотность керосина различных марок и разного молекулярного веса может отличаться на 5…10%. Например, плотность авиационного керосина ТС-1 при 20°С равна 780 кг/м 3 , ТС-2 — 766 кг/м 3 , авиакеросина Т-6 — 841 кг/м 3 , плотность топлива РТ составляет величину 778 кг/м 3 . Плотность керосина Т-1 при температуре 20°С равна 819 кг/м 3 или 819 г/л, плотность осветительного керосина составляет 840 кг/м 3 .

При нагревании этого топлива, его плотность снижается из-за увеличения объема за счет теплового расширения. Например, при температуре 270°С плотность керосина Т-1 становится равной 618 кг/м 3 .

Керосин близок по другим видам топлива. Например, дизельное топливо имеет плотность около 860 кг/м 3 , бензин — от 680 до 800 кг/м 3 . Если сравнить плотность керосина и воды, то плотность этого топлива будет меньше . При попадании в воду керосин будет образовывать маслянистую пленку на ее поверхности.

Плотность керосина в зависимости от температуры - таблица
t, °С ρ, кг/м 3 t, °С ρ, кг/м 3 t, °С ρ, кг/м 3
20 819 110 759 200 685
30 814 120 751 210 676
40 808 130 744 220 668
50 801 140 736 230 658
60 795 150 728 240 649
70 788 160 720 250 638
80 781 170 711 260 628
90 774 180 703 265 623
100 766 190 694 270 618

Удельная теплоемкость керосина при различных температурах

В таблице представлены значения удельной теплоемкости керосина при различных температурах. Теплоемкость керосина указана в диапазоне температуры от 20…270°С. Значение удельной (массовой) теплоемкости керосина определяется его составом, то есть содержанием ароматических и парафиновых углеводородов. Чем меньше в составе керосина парафинов и олефинов, тем ниже его теплоемкость.

Удельная теплоемкость керосина зависит от температуры — она увеличивается при нагревании этого топлива. Зависимость теплоемкости от температуры носит нелинейный характер. При комнатной температуре его удельная теплоемкость равна 2000 Дж/(кг·К). При высоких температурах значение этого теплофизического свойства керосина может достигать 3300 Дж/(кг·К).

Кроме того, теплоемкость керосина также зависит и от давления. При повышении давления она уменьшается — при высоких температурах влияние давления усиливается. Следует отметить, что зависимость теплоемкости керосина от давления не линейна.

Удельная теплоемкость керосина - таблица
t, °С C p , Дж/(кг·К) t, °С C p , Дж/(кг·К) t, °С C p , Дж/(кг·К)
20 2000 110 2430 200 2890
30 2040 120 2480 210 2940
40 2090 130 2530 220 3000
50 2140 140 2580 230 3050
60 2180 150 2630 240 3110
70 2230 160 2680 250 3160
80 2280 170 2730 260 3210
90 2330 180 2790 265 3235
100 2380 190 2840 270 3260

Вязкость керосина в зависимости от температуры

Дана таблица значений динамической μ и кинематической ν вязкости керосина при положительных и отрицательных температурах в диапазоне от -50 до 300°С. Вязкость керосина определяется количеством и размерами ассоциатов молекул углеводородов в его составе. Масштаб таких молекулярных связей напрямую зависит от температуры этого топлива. При низких температурах они достаточно многочисленны и имеют крупные размеры, что делает керосин в этих условиях ощутимо вязким.

При комнатной температуре динамическая вязкость керосина имеет значение 0,00149 Па·с. Кинематическая вязкость керосина при температуре 20°С равна 1,819·10 -6 м 2 /с. С повышением температуры этого топлива его вязкость уменьшается. Коэффициент кинематической вязкости имеет меньшую скорость такого снижения, чем динамический, поскольку плотность керосина также изменяется с температурой. Например, при нагревании керосина с 20 до 200 градусов его динамическая вязкость уменьшается в 5,7 раза, а кинематическая — в 4,8.

Таблица значений динамической и кинематической вязкости керосина
t, °С μ·10 3 , Па·с ν·10 6 , м 2 /с t, °С μ·10 3 , Па·с ν·10 6 , м 2 /с
-50 11,5 14,14 40 1,08 1,337
-45 9,04 60 0,832 1,047
-40 7,26 8,59 80 0,664 0,85
-35 5,96 100 0,545 0,711
-30 4,98 5,75 120 0,457 0,61
-25 4,22 140 0,39 0,53
-20 3,62 4,131 160 0,338 0,469
-15 3,14 180 0,296 0,421
-10 2,75 3,12 200 0,262 0,382
-5 2,42 220 0,234 0,35
0 2,15 2,61 240 0,211 0,325
5 1,92 260 0,191 0,304
10 1,73 280 0,174
20 1,49 1,819 300 0,159

Примечание: значения кинематической вязкости керосина в таблице получены расчетным путем через величину динамической вязкости и плотности.

Поделиться