Простой импульсный блок питания на IR2153(D) для усилителя и не только. Импульсный блок питания на IR2153 с защитой Блоки питания на ir2153

Внимание! Данная схема не рекомендуется к сборке! Есть более совершенная и надежная схема:

Представляю вашему вниманию просто импульсный блок питания на микросхеме IR2153.

Схема импульсного блока питания представляет собой стандартную схему из даташита. Отличие схемы от даташитной лишь в оригинальном способе запитки драйвера и простой, высокоэффективной защите от короткого замыкания и перегрузок.

Драйвер запитывается непосредственно от сети, через диод и гасящий резистор, а не после основного выпрямителя от шины +310В как это делают обычно. Такой способ запитки дает нам сразу несколько преимуществ:

1. Снижает мощность рассеиваемую на гасящем резисторе. Что снижает выделение тепла на плате и повышает общий КПД схемы.
2. В отличает от запитки по шине +310В обеспечивает более низкий уровень пульсаций напряжения питания драйвера.

Защита от перегрузок и КЗ выполнена на паре транзисторов 2N5551/5401. В качестве датчика тока в данной схеме используются резисторы включенные в исток нижнего плеча преобразователя. Это позволяет отказаться от трудоемкого процесса намотки токового трансформатора. С помощью R6 настраивается порог срабатывания защиты.

При КЗ или перегрузке, когда падение напряжения на R10 R11 достигает заданной величины, такой величины при котором на базе VT1 напряжение станет больше 0,6 - 0,7В, сработает защита и питание микросхемы будет шунтировано на землю. Что в свою очередь отключает драйвер и весь БП в целом. Как только перегрузка или КЗ устранено, питание драйвера возобновляется и блок питания продолжает работу в штатном режиме. Светодиод HL1 сигнализирует о срабатывании защиты.

Защита настраивается так. К выходу каждого плеча блока питания подключаются мощные 10 Ом"ные резисторы. Включается блок питания в сеть. Вращением движка R6 добиваемся того чтобы HL1 погас, а затем выставляем движок в такое положение, чтобы HL1 еще не горел, но при минимальном повороте движка в сторону уменьшения тока срабатывания защиты, светодиод загорался. При такой настройке защиты, она будет срабатывать при выходной мощности приблизительно 300Вт. Такой режим работы безопасен для данных ключей (IRF740) и драйвера.

Трансформатор намотан на сердечнике ER35/21/11. Первичная обмотка намотана в два провода 0,63мм2 и содержит 33 витка. Вторичная обмотка состоит из двух половинок, намотанных в три провода 0,63мм2 и каждая половинка содержит по 9 витков.

Печатная плата выполнена в формате . Распечатке на лазерном принтере зеркалить ее не нужно.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Драйвер питания и MOSFET

IR2153

1 В блокнот
VT1 Биполярный транзистор

2N5551

1 В блокнот
VT2 Биполярный транзистор

2N5401

1 В блокнот
VT3, VT4 MOSFET-транзистор

IRF740

2 В блокнот
VD1, VD2 Выпрямительный диод

HER108

2 В блокнот
VDS1 Диодный мост

RS405L

1 Или другой до 1000В В блокнот
VDS2 Выпрямительный диод

FR607

4 Или Шоттки с похожими характеристиками В блокнот
VDR1 Термистор 250В 1 В блокнот
R1, R5 Резистор

10 кОм

2 0.25 Вт В блокнот
R2 Резистор

18 кОм

1 2 Вт В блокнот
R3, R9 Резистор

100 Ом

2 0.25 Вт В блокнот
R4 Резистор

15 кОм

1 0.25 Вт В блокнот
R6 Переменный резистор 10 кОм 1 В блокнот
R7, R8 Резистор

33 Ом

2 2 Вт В блокнот
R10, R11 Резистор

0.2 Ом

2 Можно цементный аксиальный В блокнот
С1-С3, С15, С16 Конденсатор 100 нФ 1000В 5 Пленочный В блокнот
С4 Электролитический конденсатор 220 мкФ х 16В 1 В блокнот
С5, С6 Конденсатор 1 нФ х 50В 2 Керамический В блокнот
C7 Конденсатор 680 нФ 50В 1 Керамический

Блок питания построен по полу мостовой схеме на основе микросхемы IR2153. На выходе этого блока можно получить любое нужное вам напряжение, все зависит от параметров вторичной обмотки трансформатора.

Подробно рассмотрим схему импульсного блока питания.

Мощность источника питания именно с такими компонентами около 150 ватт.

Сетевое переменное напряжение через предохранитель и термистор поступает на диодный выпрямитель.

После выпрямителя стоит электролитический конденсатор, который в момент включения блока в сеть будет заряжаться большим током, термистор как раз ограничивает этот ток. Конденсатор нужен с напряжением 400-450 Вольт. Далее постоянное напряжение поступает на силовые ключи. Одновременно через ограничительный резистор и выпрямительный диод поступает питание на микросхему IR2153.

Резистор нужен мощный, не менее 2-х ватт, лучше взять 5-и ваттный. Напряжение питания для микросхемы дополнительно сглаживается небольшим электролитическим конденсатором, емкостью от 100 до 470мкФ, желательно на 35 Вольт. Микросхема начинает вырабатывать последовательность прямоугольных импульсов, частота которых зависят от номинала компонентов времязадающей цепи, в моем случае частота находиться в районе 45кГц.

На выходе установлен выпрямитель со средней точкой. Выпрямитель в виде диодной сборки в корпусе то-220. Если выходное напряжение планируется в пределах 40 вольт, то можно использовать диодные сборки выпаянные из компьютерных блоков питания.

Конденсатор вольтодобавки, предназначен для корректного срабатывания верхнего полевого ключа, емкость зависит от того, какой транзистор использован, но в среднем 1мкФ хватит для большинства случаев.

Перед запуском нужно проверить работу генератора. Для этих целей от внешнего источника питания на указанные выводы микросхемы подается около 15-и вольт постоянного напряжения.
Далее проверяется наличие прямоугольных импульсов на затворе полевых ключей, импульсы должны быть полностью идентичными, одинаковой частоты и заполнения.
Первый запуск источника питания обязательно делается через страховочную лампу накаливания на 220 Вольт с мощностью около 40 ватт, будьте предельно осторожны, не дотрагивайтесь платы во время работы, после отключения блока от сети дождитесь несколько минут пока высоковольтный конденсатор не разрядится через соответствующий резистор.
Очень важно указать то, что эта схема не имеет защиты от коротких замыканий, поэтому любые короткие замыкания, даже кратковременные приведут к выходу из строя силовых ключей и микросхемы IR2153, так, что будьте аккуратны.

Электропитание

Импульсный блок питания усилителя на IR2151, IR2153

Импульсные блоки питания – наиболее эффективный класс вторичных источников питания. Они характеризуются компактными размерами, высокой надежностью и КПД. К недостаткам можно отнести лишь создание высокочастотных помех и сложность проектирования /реализации.

Все импульсные ПБ – это своего рода инверторы (системы, генерирующие переменное напряжение на выходе высокой частоты из выпрямленного напряжения на входе).
Сложность таких систем даже не в том, чтобы сначала выпрямить входное сетевое напряжение, или в последующем преобразовать выходной высокочастотный сигнал в постоянный, а в обратной связи, которая позволяет эффективно стабилизировать выходное напряжение.

Особо сложным здесь можно назвать процесс управления выходными напряжениями высокого уровня. Очень часто блок управления питается от низковольтного напряжения, что порождает необходимость согласования уровней.

Драйверы IR2151, IR2153

Для того, чтобы управлять независимо (или зависимо, но со специальной паузой, исключающей одновременное открытие ключей) каналами верхнего и нижнего ключа, применяются самотактируемые полумостовые драйвера, такие как IR2151 или IR2153 (последняя микросхема является улучшенной версией исходной IR2151, обе взаимозаменяемы).

Существуют многочисленные модификации данных схем и аналоги от других производителей.

Типовая схема включения драйвера с транзисторами выглядит следующим образом.

Рис. 1. Схема включения драйвера с транзисторами

Тип корпуса может быть PDIP или SOIC (разница на картинке ниже).

Рис. 2. Тип корпуса PDIP и SOIC

Модификация с буквой D в конце предполагает наличие дополнительного диода вольтодобавки.

Различия микросхем IR2151 / 2153 / 2155 по параметрам можно увидеть в таблице ниже.

Таблица

ИБП на IR2153 – простейший вариант

Сама принципиальная схема выглядит следующим образом.

Рис. 3. Принципиальная схема ИБП

На выходе можно получить двухполярное питание (реализуется выпрямителями со средней точкой).

Мощность БП можно увеличить за счет изменения параметров емкости конденсатора C3 (считается как 1:1 – на 1 Вт нагрузки требуется 1 мкф).

В теории выходную мощность можно нарастить до 1.5 кВт (правда для конденсаторов такой ёмкости потребуется система soft-старта).

При конфигурации, обозначенной на принципиальной схеме, достигается выходная сила тока 3,3А (до 511 В) при использовании в усилителях мощности, или 2,5А (387 В) – при подключении постоянной нагрузки.

ИБП с защитой от перегрузок

Сама схема.

Рис. 4. Схема ИБП с защитой от перегрузок

В данном БП предусмотрена система перехода на рабочую частоту, исключающая броски пускового тока (софт-старт), а также простейшая защита от ВЧ помех (на входе и выходе катушки индуктивности).

ИБП мощностью до 1,5 кВт

Схема ниже может обеспечивать работу с мощными силовыми транзисторами, такими как SPW35N60C3, IRFP460 и т.п.

Рис. 5. Схема ИБП мощностью до 1,5 кВт

Управление мощными VT4 и VT5 реализовано через эмиттерные повторители на VT2 и VT1.

БП усилителя на трансформаторе из БП компьютера

Часто случается так, что комплектующие покупать практически и не нужно, они могут стоять и пылиться в составе давно неиспользуемой техники, например, в системном блоке ПК где-то в подвале или на балконе.

Ниже приведена одна из достаточно простых, но не менее работоспособных схем ИБП для усилителя.

  • александр / 24.04.2019 - 08:24
    на рис 6 ошибка нет конденсатора в цепи трансформатора выхода
  • Импульсный блок питания на IR2151-IR2153

    Плюс любого импульсного блока питания состоит в том что не требуется намотки или покупки громоздкого трансформатора.А требуется всего лишь трансформатор с несколькими витками.Данный блок питания сделать самому несложно и требует немного деталей. И основа,это то что блок питания на микросхеме IR2151

    Характерной чертой этого блока питания является его простота и повторяемость. Схема содержит малое количество компонентов и хорошо себя зарекомендовала на протяжении более двух лет. В качестве импульсного трансформатора используется типовой понижающий трансформатор из компьютерного блока питания.


    На входе стоит PTC термистор – полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef. Защищает силовые ключи в момент включения на время зарядки конденсаторов.

    Диодный мост на входе для выпрямления сетевого напряжения на ток 10А. Использована диодная сборка типа "вертикалка", но можно использовать диодную сборку типа "табуретка".

    Пара конденсаторов на входе берется из расчета 1 мкф на 1 Вт. В нашем случае конденсаторы "вытянут" нагрузку в 220Вт.

    Гасящее сопротивление в цепи питания драйвера мощностью 2 Вт. Предпочтение отдано отечественным резисторам типа МЛТ-2.

    Драйвер IR2151 – для управления затворами полевых транзисторов, работающих под напряжением до 600В. Возможная замена на IR2152, IR2153. Если в названии есть индекс "D", например IR2153D, то диод FR107 в обвязке драйвера не нужен. Драйвер поочередно открывает затворы полевых транзисторов с частотой, задаваемой элементами на ножках Rt и Ct.

    Полевые транзисторы используются предпочтительно фирмы IR . Выбирают на напряжение не менее 400В и с минимальным сопротивлением в открытом состоянии. Чем меньше сопротивление, тем меньше нагрев и выше КПД. Можно рекомендовать IRF740, IRF840 и пр. Справочник по полевым транзисторам фирмы IR на русском языке можно скачать здесь. Внимание! Фланцы полевых транзисторов не закорачивать; при монтаже на радиатор использовать изоляционные прокладки и шайбы-втулки.

    Трансформатор типовой понижающий из блока питания компьютера. Как правило, цоколевка соответствует приведенной на схеме. В этой схеме работают и самодельные трансформаторы, намотанные на ферритовых торах. Расчет самодельных трансформаторов ведется на частоту преобразования 100 кГц и половину выпрямленного напряжения (310/2 = 155В).

    При выборе трансформатора следует брать такой, у которого на родной плате закорочены вывода так, как это показано на схеме. Это важно. Иначе вам следует закротить как это сделано на плате, из которой вы демонтируете трансформатор.

    Диоды на выходе с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER (High Efficiency Rectifier – высоко-эффективные выпрямительные). Не путать с диодами Шоттки.

    Емкость на выходе – буферная емкость. Не следует устанавливать емкость более 10000 мкф .

    Печатная плата

    Практика показала, что в данном приложении не требуется специальной организации обратной связи, индуктивных фильтров по питанию, снабберов и прочих "наворотов", присущих импульсным преобразователям. Так или иначе, в звуке на слух не ощущается типичных дефектов, свойственных "плохому питанию" (фон и посторонние звуки).

    В работе полевые транзисторы не сильно нагреваются.

    Для них достаточно пассивного охлаждения. Полевые транзисторы фирмы IR очень устойчивы к тепловому разрушению и работают вплоть до температуры 150?С. Но это не означает, что их следует эксплуатировать в таком критическом режиме. Для таких случаев потребуется организация активного охлаждения, а по-простому, установить вентилятор.

    Как и любое устройство, этот блок питания требует внимательной и аккуратной сборки, правильной установки полярных элементов и осторожности при работе с сетевым напряжением. После ВЫключения данного блока питания в его цепях не остается опасного напряжения. Правильно собранный блок питания не нуждается в настройке и налаживании.

    Доброго дня всем! Вот смотрю схемы в Интернете блоков питания импульсных и... И не понимаю! Толи авторы не читают "Datasheet" на компоненты, толи специально отбивают охоту собирать ИБП??? . Смотрим описание IR2153 : "улучшенная версия IR2153 -2155, перечень улучшений сводится к защите от помех. .. Читаем: рекомендуемая емкость нагрузки 1000 пф, мощность 0,650 вт (кратковременно)! Так это данные на IR2151 !!! И так имеем: IR2153 может управлять ключами с емкостной нагрузкой в 1n=1000пф! Смотрим "datasheet" ключей. IR740 - 1450 пф. В полтора раза превышает рекомендованное. Теперь напряжение. Рекомендовано максимальное напряжение ключей 600 v(в) ! А ключи имеют 400 в. Ну да, это больше 310 в! Однако всем, кто сталкивался с промышленными схемами ИБП, хорошо известно, что ключи ставятся на напряжение не меньше 600 в. Только в Китайских схемах иногда появляются сгоревшие на 500 в. Надеюсь объяснил понятно?! Что касается тока ключа, и сопротивления ключа в открытом состоянии. Это мало влияет на мощность ИБП. Объясню. Для импульсного блока питания ток ограничен прохождением через нагрузку и как правило в импульсе не превышает 2-3 а. В импульсе! Смотрим "datasheet" ключей и видим: при температуре кристалла 100 гр. ток с большим запасом у IR740. Однако в данном случае это для ключа минус! Чем больше ток ключа - тем больше время переключения (см. график там же) и уж конечно меньше крутизна импульса, а значит КПД меньше максимального (75%). Соответственно данный ключ работать будет, но плохо!!! В результате перечисленного: такое сочетание влечет выгорание как ключей так и драйвера! Кто хочет повторить эту схему - обречен на горсть сгоревших деталей! Я не прав? Почитайте комментарии к подобным схемам. Следует вопрос: ты такой умный, так что посоветуешь? Посоветую, всем кто хочет иметь простую сборку ИБП, взять схему из описания и рекомендации Компании "IR" - драйвер IR2153 с ключами на ток 4-5 а и макс. напряжением 600-900 в с емкостью управляющего электрода не более 1000 пф. Пример STP5NK600C и подобные MOSFET триоды. Теперь про сопротивление в открытом состоянии для ключа: действительно чем оно больше - тем сильнее нагрев ключа. Кто то скажет и меньше КПД. В данном случае КПД не 100% и влияние сопротивления очень мало. Так что влияет на КПД? На КПД влияет сама схема ИБП, для КПД до 94% собираем резонансный ИБП. КПД до 75% - с правильными ключами на IR2153 !. вам мало такого КПД? Хм. А как насчет трансформатора импульсного? Он как ограничит КПД? Кто то посчитал уже? Потери при частотах с выше 50 Кгц возрастают в разы, хотя и до 50 Кгц потери не нулевые. Смотрим промышленные схемы: намотка импульсных трансформаторов очень капризное занятие, два, одинаково намотанных, трансформатора имеют различную индуктивность! Что это? А это то и есть! Каждый ИТ имеет всою оптимальную рабочую частоту. А это как Вам? Всё - дальше читайте и смотрите схемы ИБП телевизоров, мощных усилителей, и прочих заводских электроприборов. Успеха Вам!

    Поделиться