У каких элементов высшая степень окисления 4. Правильное составление формул веществ

Задание №1

Степень окисления +2 во всех соединениях проявляет

Ответ: 4

Пояснение:

Из всех предложенных вариантов степень окисления +2 в сложных соединениях проявляет только цинк, являясь элементом побочной подгруппы второй группы, где максимальная степень окисления равна номеру группы.

Олово – элемент главной подгруппы IV группы, металл, проявляет степени окисления 0 (в простом веществе), +2, +4 (номер группы).

Фосфор – элемент главной подгруппы главной группы, являясь неметаллом, проявляет степени окисления от -3 (номер группы – 8) до +5 (номер группы).

Железо – металл, элемент расположен в побочной подгруппе главной группы. Для железа характерны степени окисления: 0, +2, +3, +6.

Задание №2

Соединение состава KЭО 4 образует каждый из двух элементов:

1) фосфор и хлор

2) фтор и марганец

3) хлор и марганец

4) кремний и бром

Ответ: 3

Пояснение:

Соль состава KЭО 4 содержит кислотный остаток ЭО 4 - , где кислород обладает степенью окисления -2, следовательно, степень окисления элемента Э в этом кислотном остатке равна +7. Из предложенных вариантов подходят хлор и марганец – элементы главной и побочной подгруппы VII группы соответственно.

Фтор – также элемент главной подгруппы VII группы, однако, являясь самым электроотрицательным элементом, не проявляет положительных степеней окисления (0 и -1).

Бор, кремний и фосфор – элементы главных подгрупп 3, 4 и 5 групп соответственно, поэтому в солях проявляют соответствующие максимальные степени окисления +3, +4, +5.

Задание №3

  • 1. Zn и Cr
  • 2. Si и B
  • 3. Fe и Mn
  • 4. P и As

Ответ: 4

Пояснение:

Одинаковую высшую степень окисления в соединениях, равную номеру группы (+5), проявляют P и As. Это элементы расположены в главной подгруппе V группы.

Zn и Cr – элементы побочных подгрупп II и VI групп соответственно. В соединениях цинк проявляет высшую степень окисления +2, хром - +6.

Fe и Mn – элементы побочных подгруппы VIII и VII групп соответственно. Высшая степень окисления у железа составляет +6, у марганца - +7.

Задание №4

Одинаковую высшую степень окисления в соединениях проявляют

  • 1. Hg и Cr
  • 2. Si и Al
  • 3. F и Mn
  • 4. P и N

Ответ: 4

Пояснение:

Одинаковую высшую степень окисления в соединениях, равную номеру группы (+5), проявляют P и N. Эти элементы расположены в главной подгруппе V группы.

Hg и Cr – элементы побочных подгрупп II и VI групп соответственно. В соединениях ртуть проявляет высшую степень окисления +2, хром – +6.

Si и Al − элементы главных подгруппы IV и III групп соответственно. Следовательно, для кремния максимальная степень окисления в сложных соединениях равна +4 (номер группы, где расположен кремний), для алюминия − +3 (номер группы, где расположен алюминия).

F и Mn – элементы главной и побочной подгрупп VII групп соответственно. Однако фтор, являясь самым электроотрицательным элементом Периодической системы химических элементов, не проявляет положительных степеней окисления: в сложных соединения его степень окисления равна −1 (номер группы−8). Высшая степень окисления марганца составляет +7.

Задание №5

Степень окисления +3 азот проявляет в каждом из двух веществ:

  • 1. HNO 2 и NH 3
  • 2. NH 4 Cl и N 2 О 3
  • 3. NaNO 2 и NF 3
  • 4. HNO 3 и N 2

Ответ: 3

Пояснение:

В азотистой кислоте HNO 2 степень окисления кислорода в кислотном остатке равна -2, у водорода - +1, следовательно, чтобы молекула оставалась электронейтральной, степень окисления азота составляет +3. В аммиаке NH 3 азот является более электроотрицательным элементом, поэтому он оттягивает на себя электронную пару ковалентной полярной связи и обладает отрицательной степенью окисления -3, степень окисления водорода в аммиаке составляет +1.

Хлорид аммония NH 4 Cl является аммонийной солью, поэтому степень окисления азота такая же, как в аммиаке, т.е. равна -3. В оксидах степень окисления кислорода всегда равна -2, поэтому у азота она составляет +3.

В нитрите натрия NaNO 2 (соли азотистой кислоты) степень окисления азота такая же, как в азота в азотистой кислоте, т.к. составляет +3. Во фториде азота степень окисления азота +3, поскольку фтор является самым электроотрицательным элементом Периодической системы и в сложных соединениях проявляет отрицательную степень окисления -1. Данный вариант ответа удовлетворяет условию задания.

В азотной кислоте азот обладает высшей степенью окисления, равной номеру группы (+5). Азот как простое соединение (поскольку состоит из атомов одного химического элемента) обладает степенью окисления 0.

Задание №6

Высшему оксиду элемента VI группы соответствует формула

  • 1. Э 4 O 6
  • 2. ЭO 4
  • 3. ЭO 2
  • 4. ЭО 3

Ответ: 4

Пояснение:

Высшим оксидом элемента является оксид элемента с его максимальной степени окисления. В группе наивысшая степень окисления элемента равна номеру группы, следовательно, в VI группе максимальная степень окисления элемента равна +6. В оксидах кислород проявляет степень окисления -2. Цифры, стоящие под символом элемента, называются индексами и указывает на количество атомов этого элемента в молекуле.

Первый вариант является неверным, т.к. элемент обладает степенью окисления 0-(-2)⋅6/4 = +3.

Во втором варианте элемент обладает степенью окисления 0-(-2) ⋅ 4 = +8.

В третьем варианте степень окисления элемента Э: 0-(-2) ⋅ 2 = +4.

В четвертом варианте степень окисления элемента Э: 0-(-2) ⋅ 3 = +6, т.е. это искомый ответ.

Задание №7

Степень окисления хрома в дихромате аммония (NH 4) 2 Cr 2 O 7 равна

  • 1. +6
  • 2. +2
  • 3. +3
  • 4. +7

Ответ: 1

Пояснение:

В бихромате аммония (NH 4) 2 Cr 2 O 7 в катионе аммония NH 4 + азот как более электроотрицательный элемент обладает низшей степенью окисления -3, водород заряжен положительно +1. Следовательно, весь катион обладает зарядом +1, но, поскольку этих катионов 2, то общий заряд составляет +2.

Для того чтобы молекула оставалась электронейтральной, у кислотного остатка Cr 2 O 7 2− заряд должен быть -2. Кислород в кислотных остатках кислот и солей всегда обладает зарядом -2, поэтому 7 атомов кислорода, входящих в состав молекулы бихромата аммония, заряжены -14. Атомов хрома Cr в молекулы 2, следовательно, если заряд хрома обозначить за x, то имеем:

2x + 7 ⋅ (-2) = -2, где x = +6. Заряд хрома в молекуле бихромата аммония равен +6.

Задание №8

Степень окисления +5 возможна для каждого из двух элементов:

1) кислорода и фосфора

2) углерода и брома

3) хлора и фосфора

4) серы и кремния

Ответ: 3

Пояснение:

В первом предложенном варианте ответов только фосфор как элемент главной подгруппы V группы может проявлять степень окисления +5, которая является для него максимальной. Кислород (элемент главной подгруппы VI группы), являясь элементом с высокой электроотрицательностью, в оксидах проявляет степень окисления -2, как простое вещество – 0 и в соединении со фтором OF 2 – +1. Степень окисления +5 для него не характерна.

Углерод и бром – элементы главных подгрупп IV и VII групп соответственно. Для углерода характерна максимальная степень окисления +4 (равна номеру группы), а бром проявляет степени окисления -1, 0 (в простом соединении Br 2), +1, +3, +5 и +7.

Хлор и фосфор – элементы главных подгрупп VII и V групп соответственно. Фосфор проявляется максимальную степень окисления +5 (равную номеру группы), для хлора аналогично брому характерны степени окисления -1, 0 (в простом соединении Cl 2), +1, +3, +5, +7.

Сера и кремний – элементы главных подгрупп VI и IV групп соответственно. Сера проявляет широкий спектр степеней окисления от -2 (номер группы − 8) до +6 (номер группы). Для кремния максимальная степень окисления равна +4 (номер группы).

Задание №9

  • 1. NaNO 3
  • 2. NaNO 2
  • 3. NH 4 Cl
  • 4. NO

Ответ: 1

Пояснение:

В нитрате натрия NaNO 3 натрий имеет степень окисления +1 (элемент I группы), атомов кислорода в кислотном остатке 3, каждый из которых имеет степень окисления −2, следовательно, чтобы молекула оставалась электронейтральной, азот должен иметь степень окисления: 0 − (+1) − (−2)·3 = +5.

В нитрите натрия NaNO 2 атом натрий также имеет степень окисления +1 (элемент I группы), атомов кислорода в кислотном остатке 2, каждый из которых имеет степень окисления −2, следовательно, чтобы молекула оставалась электронейтральной, азот должен обладать степенью окисления: 0 − (+1) − (−2)·2 = +3.

NH 4 Cl − хлорид аммония. В хлоридах атомы хлора имеют степень окисления −1, атомы водорода, которого в молекуле 4, заряжен положительно, следовательно, чтобы молекула оставалась электронейтральной, степень окисления азота: 0 − (−1) − 4 ·(+1) = −3. В аммиаке и катионах аммонийных солей азот имеет минимальную степень окисления −3 (номер группы, в которой расположен элемент, − 8).

В молекуле оксида азота NO кислород проявляет минимальную степень окисления −2, как во всех оксидах, следовательно, степень окисления азота равна +2.

Задание №10

Высшую степень окисления азот проявляет в соединении, формула которого

  • 1. Fe(NO 3) 3
  • 2. NaNO 2
  • 3. (NH 4) 2 SO 4
  • 4. NO 2

Ответ: 1

Пояснение:

Азот – элемент главной подгруппы V группы, следовательно, он может проявлять максимальную степень окисления, равную номеру группы, т.е. +5.

Одна структурная единица нитрата железа Fe(NO 3) 3 состоит из одного иона Fe 3+ и трех нитрат-ионов. В нитрат-ионах атомы азота независимо от типа противоиона имеют степень окисления +5.

В нитрите натрия NaNO 2 натрий имеет степень окисления +1 (элемент главной подгруппы I группы), атомов кислорода в кислотном остатке 2, каждый из которых имеет степень окисления −2, следовательно, чтобы молекула оставалась электронейтральной, азот должен обладать степенью окисления 0 − (+1) − (−2)⋅2 = +3.

(NH 4) 2 SO 4 – сульфат аммония. В солях серной кислоты анион SO 4 2− имеет заряд 2−, следовательно, каждый катион аммония заряжен 1+. На водороде заряд +1, поэтому на азоте −3 (азот более электроотрицателен, поэтому оттягивает на себя общую электронную пару связи N−H). В аммиаке и катионах аммонийных солей азот имеет минимальную степень окисления −3 (номер группы, в которой расположен элемент, − 8).

В молекуле оксида азота NO 2 кислород проявляет минимальную степень окисления −2, как во всех оксидах, следовательно, степень окисления азота равна +4.

Задание №11

28910E

В соединениях состава Fe(NO 3) 3 и CF 4 степень окисления азота и углерода равна соответственно

Ответ: 4

Пояснение:

Одна структурная единица нитрата железа (III) Fe(NO 3) 3 состоит из одного иона железа Fe 3+ и трех нитрат-ионов NO 3 − . В нитрат-ионах азот всегда имеет степень окисления +5.

Во фториде углерода CF 4 фтор является более электроотрицательным элементом и оттягивает на себя общую электронную пару связи C-F, проявляя степень окисления -1. Следовательно, углерод C имеет степень окисления +4.

Задание №12

A32B0B

Степень окисления +7 хлор проявляет в каждом из двух соединений:

  • 1. Ca(OCl) 2 и Cl 2 O 7
  • 2. KClO 3 и ClO 2
  • 3. BaCl 2 и HClO 4
  • 4. Mg(ClO 4) 2 и Cl 2 O 7

Ответ: 4

Пояснение:

В первом варианте атомы хлора обладают степенями окисления +1 и +7 соответственно. Одна структурная единица гипохлорита кальция Ca(OCl) 2 состоит из одного иона кальция Ca 2+ (Ca - элемент главной подгруппы II группы) и двух гипохлорит-ионов OCl − , каждый из которых имеет заряд 1−. В сложных соединениях, кроме OF 2 и различных перекисей, кислород всегда имеет степень окисления −2, поэтому, очевидно, что хлор имеет заряд +1. В оксиде хлора Cl 2 O 7 , как и во всех оксидах, кислород обладает степенью окисления −2, следовательно, на хлор в этом соединении имеет степень окисления +7.

В хлорате калия KClO 3 атом калия имеет степень окисления +1, а кислород - −2. Для того чтобы молекула оставалась электронейтральной, хлор должен проявлять степень окисления +5. В оксиде хлора ClO 2 кислород, как и в любом другом оксиде, обладает степенью окисления −2, следовательно, для хлора его степень окисления равна +4.

В третьем варианте катион бария в сложном соединении заряжен +2, следовательно, на каждом анионе хлора в соли BaCl 2 сосредоточен отрицательный заряд −1. В хлорной кислоте HClO 4 общий заряд 4 атомов кислорода составляет −2⋅4 = −8, на катионе водорода заряд +1. Чтобы молекула оставалась электронейтральной, заряд хлора должен составлять +7.

В четвертом варианте в молекуле перхлората магния Mg(ClO 4) 2 заряд магния +2 (во всех сложных соединениях магний проявляет степень окисления +2), поэтому на каждый анион ClO 4 − приходится заряд 1−. В общем 4 иона кислорода, где каждый проявляет степень окисления −2, заряжены −8. Следовательно, чтобы общий заряд аниона составлял 1−, на хлоре должен быть заряд +7. В оксиде хлора Cl 2 O 7 , как было объяснено выше, заряд хлора составляет +7.

Современная формулировка Периодического закона, открытого Д. И. Менделеевым в 1869 г.:

Свойства элементов находятся в периодической зависимости от порядкового номера.

Периодически повторяющийся характер изменения состава электронной оболочки атомов элементов объясняет периодическое изменение свойств элементов при движении по периодам и группам Периодической системы.

Проследим, например, изменение высших и низших степеней окисления у элементов IA – VIIA-групп во втором – четвертом периодах по табл. 3.

Положительные степени окисления проявляют все элементы, за исключением фтора. Их значения увеличиваются с ростом заряда ядер и совпадают с числом электронов на последнем энергетическом уровне (за исключением кислорода). Эти степени окисления называют высшими степенями окисления. Например, высшая степень окисления фосфора Р равна +V.




Отрицательные степени окисления проявляют элементы, начиная с углерода С, кремния Si и германия Ge. Значения их равны числу электронов, недостающих до восьми. Эти степени окисления называют низшими степенями окисления. Например, у атома фосфора Р на последнем энергетическом уровне недостает трех электронов до восьми, значит, низшая степень окисления фосфора Р равна – III.

Значения высших и низших степеней окисления повторяются периодически, совпадая по группам; например, в IVA-группе углерод С, кремний Si и германий Ge имеют высшую степень окисления +IV, а низшую степень окисления – IV.

Эта периодичность изменения степеней окисления отражается на периодическом изменении состава и свойств химических соединений элементов.

Аналогично прослеживается периодическое изменение электроотрицательности элементов в 1-6-м периодах IA– VIIA-групп (табл. 4).

В каждом периоде Периодической системы электроотрицательность элементов увеличивается при возрастании порядкового номера (слева направо).




В каждой группе Периодической системы электроотрицательность уменьшается при возрастании порядкового номера (сверху вниз). Фтор F обладает наивысшей, а цезий Cs – наинизшей электроотрицательностью среди элементов 1-6-го периодов.

У типичных неметаллов – высокая электроотрицательность, а у типичных металлов – низкая.

Примеры заданий частей А, В

1. В 4-м периоде число элементов равно


2. Металлические свойства элементов 3-го периода от Na до Сl

1) силиваются

2) ослабевают

3) не изменяются

4) не знаю


3. Неметаллические свойства галогенов с увеличением порядкового номера

1) возрастают

2) понижаются

3) остаются без изменений

4) не знаю


4. В ряду элементов Zn – Hg – Со – Cd один элемент, не входящий в группу, – это


5. Металлические свойства элементов повышаются по ряду

1) In – Ga – Al

2) К – Rb – Sr

3) Ge – Ga – Tl

4) Li – Be – Mg


6. Неметаллические свойства в ряду элементов Аl – Si – С – N

1) увеличиваются

2) уменьшаются

3) не изменяются

4) не знаю


7. В ряду элементов О – S – Se – Те размеры (радиусы) атома

1) уменьшаются

2) увеличиваются

3) не изменяются

4) не знаю


8. В ряду элементов Р – Si – Аl – Mg размеры (радиусы) атома

1) уменьшаются

2) увеличиваются

3) не изменяются

4) не знаю


9. Для фосфора элемент с меньшей электроотрицательностью – это


10. Молекула, в которой электронная плотность смещена к атому фосфора, – это


11. Высшая степень окисления элементов проявляется в наборе оксидов и фторидов

1) СlO 2 , РСl 5 , SeCl 4 , SO 3

2) PCl, Аl 2 O 3 , КСl, СО

3) SeO 3 , ВСl 3 , N 2 O 5 , СаСl 2

4) AsCl 5 , SeO 2 , SCl 2 , Cl 2 O 7


12. Низшая степень окисления элементов – в их водородных соединениях и фторидах набора

1) ClF 3 , NH 3 , NaH, OF 2

2) H 3 S + , NH+, SiH 4 , H 2 Se

3) CH 4 , BF 4 , H 3 O + , PF 3

4) PH 3 , NF+, HF 2 , CF 4


13. Валентность для многовалентного атома одинакова в ряду соединений

1) SiH 4 – AsH 3 – CF 4

2) РН 3 – BF 3 – ClF 3

3) AsF 3 – SiCl 4 – IF 7

4) H 2 O – BClg – NF 3


14. Укажите соответствие между формулой вещества или иона и степенью окисления углерода в них



Задание 54.
Какую низшую степень окисления проявляют водород, фтор, сера и азот? Почему? Составьте формулы соединений кальция с данными элементами в этой степени окисления. Как называются соответствующие соединения?
Решение:
Низшая степень окисления определяется тем условным зарядом, который приобретает атом при присоединении того числа электронов, которое необходимо для образования устойчивой электронной оболочки инертного газа ns2np6 (в случае с водородом ns 2). Водород, фтор, сера и азот находятся соответственно в IА-, VIIА-, VIА- и VА- группах периодической системы химических элементов и имеют структуру внешнего энергетического уровня s 1 , s 2 p 5 , s 2 p 4 и s 2 p 3 .

Таким образом, для завершения внешнего энергетического уровня, атому водорода и атому фтора необходимо присоединить по одному электрону, атому серы – два, атому азота – три. Отсюда низкая степень окисления для водорода, фтора, серы и азота равна соответственно -1, -1, -2 и -3. Формулы соединений кальция с данными элементами в этой степени окисления:

CaH 2 – гидрид кальция;
CaF 2 – фторид кальция;
CaS – сульфид кальция;
Ca 3 N 2 – нитрид кальция.

Задание 55.
Какую низшую и высшую степени окисления проявляют кремний, мышьяк, селен и хлор? Почему? Составьте формулы соединений данных элементов, отвечающих этим степеням окисления.
Решение:
Высшую степень окисления элемента определяет, как правило, номер группы периодической системы
Д. И. Менделеева, в которой он находится. Низшая степень окисления определяется тем условным зарядом, который приобретает атом при присоединении того числа электронов, которое необходимо для образования устойчивой восьмиэлектронной оболочки инертного газа ns 2 np 6 (в случае с водородом ns 2). Кремний, мышьяк, селен и хлор находятся соответственно в IVА-, VА-, VIа- и VIIА- группах и имеют структуру внешнего энергетического уровня соответственно s 2 p 2 , s 2 p 3 , s 2 p 4 и s 2 p5. Таким образом, высшая степень окисления кремния мышьяка, селена и хлора равна соответственно +4, +5, +6 и +7. Формулы соединений данных элементов, отвечающих этим степеням окисления: H 2 SiO 3 – кремневая кислота; Н 3 AsO 4 – мышьяковая кислота; H 2 SeO 4 – селеновая кислота; HClO 4 – хлорная кислота.

Низшая степень окисления кремния мышьяка, селена и хлора равна соответственно -4, -5, -6 и -7. Формулы соединений данных элементов, отвечающих этим степеням окисления: H 4 Si, H 3 As, H 2 Se, HCl.

Задание 56.
Хром образует соединения, в которых он проявляет степени окисления +2, +3, +6. Составьте формулы его оксидов и гидроксидов, отвечающих этим степеням окисления. Напишите уравнения реакций, доказывающих амфотерность гидроксида хрома (III).
Решение:
Хром образует соединения, в которых проявляет степени окисления +2, +3, +6. Формулы его оксидов и гидроксидов, отвечающих этим степеням окисления:

а) оксиды хрома:

CrO – оксид хрома (II);
Cr 2 O 3 – оксид хрома (III);
CrO 3 - оксид хрома (VI).

б) гидроксиды хрома:

Cr(OH) 2 – гидроксид хрома (II);
Cr(OH) 3 – гидроксид хрома (III);
H 2 CrO 4 – хромовая кислота.

Cr(OH) 3 – гидроксид хрома (III) – амфолит, т. е. вещество, которое реагирует как с кислотами, так и с основаниями. Уравнения реакций, доказывающих амфотерность гидроксида хрома (III):

а) Cr(OH) 3 + 3HCl = CrCl 3 + 3H 2 O;
б) Cr(OH) 3 + 3NaOH = NaCrO 3 + 3H 2 O.

Задание 57.
Атомные массы элементов в периодической системе непрерывно увеличиваются, тогда, как свойства простых тел изменяются периодически. Чем это можно объяснить? Дайте мотивированный ответ.
Решение:
В большинстве случаев с возрастанием заряда ядра атомов элементов закономерно увеличиваются их относительные атомные массы, потому что происходит закономерное увеличение содержания протонов и нейтронов в ядрах атомов. Свойства простых тел изменяются периодически, потому что на наружном энергетическом уровне у атомов периодически изменяется количество электронов. У атомов элементов периодически с возрастанием заряда ядра возрастает число электронов на внешнем энергетическом уровне, которое необходимо для образования устойчивой восьмиэлектронной оболочки (оболочки инертного газа). Например, периодическая повторяемость свойств у атомов Li, Na и K объясняется тем, что на наружном энергетическом уровне их атомов имеется по одному валентному электрону. Также периодически повторяются свойства у атомов Не, Ne, Ar, Kr, Xe и Rn – у атомов этих элементов на наружном энергетическом уровне содержится по восемь электронов (у гелия – два электрона) – все они являются химически инертными, так как их атомы не могут ни присоединять, ни отдавать электроны атомам других элементов.

Задание 58.
Какова современная формулировка периодического закона? Объясните, по-чему в периодической системе элементов аргон, кобальт, теллур и торий помещены соответственно перед калием, никелем, иодом и протактинием, хотя и имеют большую атомную массу?
Решение:
Современная формулировка периодического закона: «Свойства химических элементов и образуемых ими простых или сложных веществ находятся в периодической зависимости от величины заряда ядра атомов элементов».

Так как у атомов К, Ni, I, Pa - обладающих меньшей относительной массой, чем соответственно у Ar, Co, Te, Th – заряды атомных ядер на единицу больше

то калию, никелю, йоду и протактинию присваивается порядковые номера соответственно 19, 28, 53 и 91.Таким образом элементу в периодической системе присваивается порядковый номер не по возрастанию его атомной массы, а по количеству протонов, содержащихся в ядре данного атома, т. е. по заряду ядра атома. Номер элемента указывает заряд ядра (количество протонов, содержащихся в ядре атома), общее число электронов, содержащихся в данном атоме.

Задание 59.
Какую низшую и высшую степени окисления проявляют углерод, фосфор, сера и йод? Почему? Составьте формулы соединений данных элементов, отвечающих этим степеням окисления.
Решение:
Высшую степень окисления элемента определяет, как правило, номер группы периодической системы Д. И. Менделеева, в которой он находится. Низшая степень окисления определяется тем условным зарядом, который приобретает атом при присоединении того числа электронов, которое необходимо для образования устойчивой восьмиэлектронной оболочки инертного газа ns2np6 (в случае с водородом ns2). Углерод, фосфор, сера и йод находятся соответственно в IVА-, VА-, VIа- и VIIА- группах и имеют структуру внешнего энергетического уровня соответственно s 2 p 2 , s 2 p 3 , s 2 p 4 и s 2 p 5 . Таким образом, высшая степень окисления углерода, фосфора, серы и йода равна соответственно +4, +5, +6 и +7. Формулы соединений данных элементов, отвечающих этим степеням окисления: СО 2 – оксид углерода (II); Н 3 РO 4 – ортофосфорная кислота; H 2 SO 4 – серная кислота; HIO 4 – йодная кислота.

Низшая степень окисления углерода, фосфора, серы и йода равна соответственно -4, -5, -6 и -7. Формулы соединений данных элементов, отвечающих этим степеням окисления: СH 4 , H 3 Р, H 2 S, HI.

Задание 60.
Атомы каких элементов четвертого периода периодической системы образуют оксид, отвечающий их высшей степени окисления Э 2 О 5 ? Какой из них дает газообразное соединение с водородом? Составьте формулы кислот, отвечающих этим оксидам и изобразите их графически?
Решение:
Оксид Э 2 О 5 , где элемент находится в своей высшей степени окисления +5, характерен для элементов V группы. Такой оксид могут образовывать два элемента четвёртого периода и V- группы – это элемент №23 (ванадий) и №33 (мышьяк). Ванадий и мышьяк, как элементы пятой группы, образуют водородные соединения состава ЭН 3 , потому что они могут проявлять низшую степень окисления -3. Так как мышьяк – неметалл, то он образует с водородом газообразное соединение – H 3 As – арсин.

Формулы кислот, отвечающих оксидам в высшей степени окисления ванадия и мышьяка:

H 3 VO 4 – ортованадиевая кислота;
HVO 3 – метаванадиевая кислота;
HAsO 3 – метамышьяковая кислота;
H 3 AsO 4 – мышьяковая (ортомышьяковая) кислота.

Графические формулы кислот:

Валентность не учитывает электроотрицательность атомов, соседних с данным, и не имеет знака. Но в соединении электроны, образующие химическую связь, смещены к атому, имеющему большую электрсотрицательность, и, следовательно, данный атом приобретает определенный заряд.

Для характеристики атома в молекуле введено понятие о степени окисления. Степень окисления отдельных атомов, образующих молекулу, получается, если заряды атомов распределяются так, что их валентные электроны оказываются принадлежащими более электроотрицательному из них. Иначе: степень окисления атома в молекуле есть тот электрический заряд, который мог бы возникнуть у атома, если бы общая электронная пара двух атомов различных элементов была бы полностью смещена к более электроотрицательному атому. А электронная пара, принадлежащая двум атомам одного и того же элемента, была бы поделена пополам.

Степень окисления (английский термин oxidation number буквально - «окислительное число») выражает величину электрического заряда данного атома и основывается на предположении, что электроны в каждой связи в молекуле (или ионе) полностью принадлежат более электроотрицательному атому. В качестве синонима к термину «окислительное число атомов» встречается название «электрохимическая валентность». Таким образом, под степенью окисления атомов в соединениях понимается заряд иона элемента, вычисленный исходя из допущения, что молекула состоит только из ионов.

Кислород в соединениях проявляет главным образом степень окисления, равную -2(в и пероксидах степень окисления кислорода равна +2 и -1). Для водорода характерна степень окисления +1, но встречается -1 (в гидридах металлов).

Принимая во внимание, что молекулы электронейтральны, легко определить степень окисления элементов в них. Так, например, в соединениях и степени окисления серы равны соответственно -2, +4 и +6;марганец в имеет степени окисления +7, +6, +4 и +2. Хлор в виде простого вещества и в соединениях с другими элементами проявляет соответственно следующие степени окисления: 0, -1, +1, +3, +4, +5, +6, +7.

Если молекула образована за счет ковалентной связи, как, например, , степень окисления более электроотрицательного атома обозначается со знаком минус, а менее электроотрицательного атома - со знаком плюс.

Так, в степень окисления серы +4, а кислорода -2.

Степень окисления элемента в свободном состоянии, т. е. в виде простых веществ, равна нулю, например . В соединениях и степень окисления соответственно равна +5, +6. В ионе аммония ковалентность атома азота равна 4, а степень окисления -3.

Для комплексных соединений обычно указывают степень окисления центрального иона. Например, в и степень окисления железа равна +3, никеля +2 и платины +4.

Степень окисления может быть и дробным числом; так, например, если в и для кислорода она равна -2 и -1, то в и она соответственно и .

Степень окисления нередко не равна валентности данного элемента. Например, степень окисления селена в виде простого вещества равна 0, валентность в основном состоянии равна 2, а в возбужденном может быть 2, 4 и 6.

В органических соединениях - метане , метиловом спирте , формальдегиде , муравьиной кислоте НСООН, а также в двуокиси углерода степени окисления углерода соответственно -4, -2, 0, +2, +4, тогда как валентность углерода во всех указанных веществах равна четырем.

Понятие о степени окисления, хотя и является формальным и часто не характеризует настоящее состояние атомов в соединениях, тем не менее очень полезно и удобно при классификации различных веществ и при рассмотрении окислительно-восстановительных процессов. Зная степень окисления атома данного элемента в соединении, можно определить, восстановителем или окислителем является это соединение. Так, например, элементы шестой главной подгруппы - сера, селен и теллур в своей высшей степени окисления +6 в соединениях являются только окислителями (и относительно сильными).

В отличие от атомов в степени окисления +6, атомы элементов в промежуточной степени +4 в соединениях типа могут быть в зависимости от условий как восстановителями, так и окислителями, при этом является главным образом восстановителем.

Сера, селен и теллур в низшей степени окисления -2 в соединениях и проявляют только восстановительные свойства. Таким образом, мы видим, что рассмотренные атомы элементов в степени окисления +6 проявляют аналогичные свойства и значительно отличаются от атомов, находящихся в степени окисления +4 или тем более в степени -2. Это относится к другим главным и побочным подгруппам периодической системы Д. И. Менделеева, в которых элементы проявляют различную степень окисления.

Понятие о степени окисления особенно плодотворно при составлении уравнений окислительно-восстановительных реакций. Окисление какого-либо атома в молекуле характеризуется повышением его степени окисления и наоборот восстановление атома - уменьшением его степени окисления (см. схему).

Степень окисления — это условный заряд атомов химического элемента в соединении, вычисленный из предположения, что все связи имеют ионный тип. Степени окисления могут иметь положительное, отрицательное или нулевое значение, поэтому алгебраическая сумма степеней окисления элементов в молекуле с учётом числа их атомов равна 0, а в ионе — заряду иона.

Данный список степеней окисления показывает все известные степени окисления химических элементов периодической таблицы Менделеева. Список основан на таблице Гринвуда со всеми дополнениями. В строках, которые выделены цветом, вписаны инертные газы степень окисления которых равна нулю.

1 −1 H +1
2 He
3 Li +1
4 -3 Be +1 +2
5 −1 B +1 +2 +3
6 −4 −3 −2 −1 C +1 +2 +3 +4
7 −3 −2 −1 N +1 +2 +3 +4 +5
8 −2 −1 O +1 +2
9 −1 F +1
10 Ne
11 −1 Na +1
12 Mg +1 +2
13 Al +3
14 −4 −3 −2 −1 Si +1 +2 +3 +4
15 −3 −2 −1 P +1 +2 +3 +4 +5
16 −2 −1 S +1 +2 +3 +4 +5 +6
17 −1 Cl +1 +2 +3 +4 +5 +6 +7
18 Ar
19 K +1
20 Ca +2
21 Sc +1 +2 +3
22 −1 Ti +2 +3 +4
23 −1 V +1 +2 +3 +4 +5
24 −2 −1 Cr +1 +2 +3 +4 +5 +6
25 −3 −2 −1 Mn +1 +2 +3 +4 +5 +6 +7
26 −2 −1 Fe +1 +2 +3 +4 +5 +6
27 −1 Co +1 +2 +3 +4 +5
28 −1 Ni +1 +2 +3 +4
29 Cu +1 +2 +3 +4
30 Zn +2
31 Ga +1 +2 +3
32 −4 Ge +1 +2 +3 +4
33 −3 As +2 +3 +5
34 −2 Se +2 +4 +6
35 −1 Br +1 +3 +4 +5 +7
36 Kr +2
37 Rb +1
38 Sr +2
39 Y +1 +2 +3
40 Zr +1 +2 +3 +4
41 −1 Nb +2 +3 +4 +5
42 −2 −1 Mo +1 +2 +3 +4 +5 +6
43 −3 −1 Tc +1 +2 +3 +4 +5 +6 +7
44 −2 Ru +1 +2 +3 +4 +5 +6 +7 +8
45 −1 Rh +1 +2 +3 +4 +5 +6
46 Pd +2 +4
47 Ag +1 +2 +3
48 Cd +2
49 In +1 +2 +3
50 −4 Sn +2 +4
51 −3 Sb +3 +5
52 −2 Te +2 +4 +5 +6
53 −1 I +1 +3 +5 +7
54 Xe +2 +4 +6 +8
55 Cs +1
56 Ba +2
57 La +2 +3
58 Ce +2 +3 +4
59 Pr +2 +3 +4
60 Nd +2 +3
61 Pm +3
62 Sm +2 +3
63 Eu +2 +3
64 Gd +1 +2 +3
65 Tb +1 +3 +4
66 Dy +2 +3
67 Ho +3
68 Er +3
69 Tm +2 +3
70 Yb +2 +3
71 Lu +3
72 Hf +2 +3 +4
73 −1 Ta +2 +3 +4 +5
74 −2 −1 W +1 +2 +3 +4 +5 +6
75 −3 −1 Re +1 +2 +3 +4 +5 +6 +7
76 −2 −1 Os +1 +2 +3 +4 +5 +6 +7 +8
77 −3 −1 Ir +1 +2 +3 +4 +5 +6
78 Pt +2 +4 +5 +6
79 −1 Au +1 +2 +3 +5
80 Hg +1 +2 +4
81 Tl +1 +3
82 −4 Pb +2 +4
83 −3 Bi +3 +5
84 −2 Po +2 +4 +6
85 −1 At +1 +3 +5
86 Rn +2 +4 +6
87 Fr +1
88 Ra +2
89 Ac +3
90 Th +2 +3 +4
91 Pa +3 +4 +5
92 U +3 +4 +5 +6
93 Np +3 +4 +5 +6 +7
94 Pu +3 +4 +5 +6 +7
95 Am +2 +3 +4 +5 +6
96 Cm +3 +4
97 Bk +3 +4
98 Cf +2 +3 +4
99 Es +2 +3
100 Fm +2 +3
101 Md +2 +3
102 No +2 +3
103 Lr +3
104 Rf +4
105 Db +5
106 Sg +6
107 Bh +7
108 Hs +8

Высшая степень окисления элемента соответствует номеру группы периодической системы, где находится данный элемент (исключение составляют: Au+3 (I группа), Cu+2 (II), из VIII группы степень окисления +8 может быть только у осмия Os и рутения Ru.

Степени окисления металлов в соединениях

Степени окисления металлов в соединениях всегда положительные, если же говорить о неметаллах, то их степень окисления зависит от того, с каким атомом он соединён элемент:

  • если с атомом неметалла то степень окисления может быть и положительная, и отрицательная. Это зависит от электроотрицательности атомов элементов;
  • если с атомом металла, то степень окисления отрицательная.

Отрицательная степень окисления неметаллов

Высшую отрицательную степень окисления неметаллов можно определить вычитанием из 8 номера группы, в которой находится данный химический элемент, т.е. высшая положительная степень окисления равна числу электронов на внешнем слое, которое соответствует номеру группы.

Обратите внимание, что степени окисления простых веществ равны 0, независимо от того металл это или неметалл.

Источники:

  • Greenwood, Norman N.; Earnshaw, A. Chemistry of the Elements - 2-е изд. - Oxford: Butterworth-Heinemann, 1997
  • Green Stable Magnesium(I) Compounds with Mg-Mg Bonds / Jones C.; Stasch A.. - Журнал Science, 2007. - Декабрь (вып. 318 (№ 5857)
  • Журнал Science, 1970. - Вып. 3929. - № 168. - С. 362.
  • Журнал Journal of the Chemical Society, Chemical Communications, 1975. - С. 760b-761.
  • Irving Langmuir The arrangement of electrons in atoms and molecules. - Журнал J. Am. Chem. Soc., 1919. - Вып. 41.
Поделиться