Молекулярная физика и теплота в XVIII столетии. Цельсий и фарингейт Единая шкала и ртуть

Меня зовут Влада, я учусь в 4 классе.

На уроках природоведения и окружающего мира мы знакомимся с природой, наблюдаем за происходящими явлениями.

В этом году была очень долгая осень, и нас удивило то, что долгое время на улице не замерзали лужи. Так же мы заметили, что иногда вместе с водой в лужах мог находиться сырой снег или лед. А были дни, когда эти лужи полностью промерзали, и воды в них не было, но через некоторое время они опять полностью успевали растаять.

И тогда мы решили исследовать явления плавления и отвердевания веществ.

В ходе исследования мы решали следующие задачи:

1. Знакомство с процессами плавления и отвердевания различных веществ.

2. Выяснение условий, при которых вещества плавятся.

3. Выяснение условий, при которых вещества отвердевают.

Вещества в природе могут находиться в разных состояниях: жидком, твердом и газообразном. Некоторые вещества мы можем пронаблюдать во всех состояниях, например, воду. А для того чтобы пронаблюдать различные состояния других веществ необходимо создать определенные условия: охлаждать их или нагревать.

Если вещество в твердом состоянии нагревать, то его можно превратить в жидкость. Этот процесс называют плавлением.

Если вещество в жидком состоянии охлаждать, то его можно превратить в твердое тело. Этот процесс называют отвердеванием.

Вещества в твердом состоянии делятся на кристаллы и аморфные тела.

У кристаллов плавление идет при определенной температуре. Пока кристалл плавится, температура его не меняется.

Отвердевание кристаллов идет при той же температуре, что и плавление. Температура при их отвердевании не меняется.

При плавлении и отвердевании аморфных тел температура меняется.

1.Исследование процесса отвердевания воды.

Цель: Исследовать процесс отвердевания воды. Выяснить условия отвердевания воды.

Оборудование: стакан с водой, термометр, секундомер.

Ход исследования.

Наблюдение отвердевания воды проводим во дворе школы.

Термометр опускаем в сосуд с водой и наблюдаем за изменениями температуры воды. По секундомеру следим за временем остывания.

Результаты наблюдений заносим в таблицу:

Температура воды, 0 С

Температура воды, 0 С

Строим график зависимости температуры от времени.

Вывод по исследованию:

Отвердевание воды идет при неизменной температуре 0 0 С. Температура в процессе отвердевания не меняется.

2.Исследование процессов плавления снега (льда).

Цель: Исследовать процесс плавления снега (льда). Выяснить условия плавления снега.

Оборудование: стакан со снегом, термометр, секундомер.

Ход исследования.

Наблюдение плавления снега проводим в кабинете физики школы.

Термометр опускаем в сосуд со снегом и наблюдаем за изменениями температуры. По секундомеру следим за временем плавления.

Температура, 0 С

Температура, 0 С

Вывод по исследованию:

Лед – кристаллическое вещество.

Плавление снега идет при неизменной температуре 0 0 С. Температура в процессе плавления не меняется.

3.Исследование процесса плавления парафина.

Цель: Исследовать процесс плавления парафина. Выяснить условия плавления парафина.

Ход исследования.

Наблюдение плавления парафина проводим в кабинете физики школы.

Термометр находится в пробирке с парафином. Помещаем пробирку в горячую воду и наблюдаем за изменениями температуры. По секундомеру следим за временем плавления.

Результаты наблюдений заносим в таблицу:

Температура, 0 С

Вывод по исследованию:

Парафин – аморфное тело. При плавлении парафина температура плавно увеличивается.

4.Исследование процесса отвердевания парафина.

Цель: Исследовать процесс отвердевания парафина. Выяснить условия отвердевания парафина.

Оборудование: пробирка с парафином, термометр, секундомер, сосуд с горячей водой.

Ход исследования.

Наблюдение отвердевания парафина проводим в кабинете физики школы.

Термометр находится в пробирке с парафином. Пробирка в горячую воду и наблюдаем за изменениями температуры. По секундомеру следим за временем плавления.

Результаты наблюдений заносим в таблицу:

Температура, 0 С

Вывод по исследованию:

Парафин – аморфное тело. При отвердевании парафина температура плавно уменьшается.

В ходе исследования мы установили, что процессы плавления и отвердевания кристаллов и аморфных тел протекают по-разному.

Кристаллы имеют определенную температуру плавления и отвердевания. Мы установили, что для воды температура плавления и отвердевания равна 0 0 С. Пока идет процесс плавления или отвердевания температура воды не менялась. Но для того, чтобы вода отвердевала необходимо, чтобы температура воздуха была меньше 0 0 С. Для того чтобы лед плавился необходимо, чтобы температура воздуха была больше 0 0 С.

Аморфные тела не имеют определенной температуры плавления и отвердевания. При нагревании аморфных веществ они постепенно плавятся, при этом их температура растет. При охлаждении они отвердевают, при этом их температура уменьшается.

Температурные шкалы. Существует несколько градуированных температурных шкал и за точки отсчета в них обычно взяты температуры замерзания и кипения воды. Сейчас самой распространенной в мире является шкала Цельсия. В 1742 шведский астроном Андерс Цельсий предложил 100-градусную шкалу термометра в которой за 0 градусов принимается температура кипения воды при нормальном атмосферном давлении а за 100 градусов - температура таяния льда. Деление шкалы составляет 1/100 этой разницы. Когда стали использовать термометры оказалось удобнее поменять местами 0 и 100 градусов. Возможно в этом участвовал Карл Линней (он преподавал медицину и естествознание в том же Упсальском университете где Цельсий - астрономию) который еще в 1838 году предложил за 0 температуры принять температуру плавления льда но похоже не додумался до второй реперной точки. К настоящему времени шкала Цельсия несколько изменилась: за 0°C по-прежнему принята температура таяния льда при нормальном давлении которая от давления не очень зависит. Зато температура кипения воды при атмосферном давлении теперь равна 99 975°C что не отражается на точности измерения практически всех термометров кроме специальных прецизионных. Известны также температурные шкалы Фаренгейта Кельвина Реомюра и др. Температурная шкала Фаренгейта (во втором варианте принятом с 1714 г.) имеет три фиксированные точки: 0° соответствовал температуре смеси воды льда и нашатыря 96° – температуре тела здорового человека (под мышкой или во рту). В качестве контрольной температуры для сверки различных термометров было принято значение 32° для точки таяния льда. Шкала Фаренгейта широко распространена в англоязычных странах но ею почти не пользуются в научной литературе. Для перевода температуры по Цельсию (°С) в температуру по Фаренгейту (°F) существует формула °F = (9/5)°C + 32 а для обратного перевода – формула °C = (5/9)(°F-32). Обе шкалы – как Фаренгейта так и Цельсия – весьма неудобны при проведении экспериментов в условиях когда температура опускается ниже точки замерзания воды и выражается отрицательным числом. Для таких случаев были введены абсолютные шкалы температур в основе которых лежит экстраполяция к так называемому абсолютному нулю – точке в которой должно прекратиться молекулярное движение. Одна из них называется шкалой Ранкина а другая – абсолютной термодинамической шкалой; температуры по ним измеряются в градусах Ранкина (°Rа) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля а точка замерзания воды соответствует 491 7° R и 273 16 K. Число градусов и кельвинов между точками замерзания и кипения воды по шкале Цельсия и абсолютной термодинамической шкале одинаково и равно 100; для шкал Фаренгейта и Ранкина оно тоже одинаково но равно 180. Градусы Цельсия переводятся в кельвины по формуле K = °C + 273 16 а градусы Фаренгейта – в градусы Ранкина по формуле °R = °F + 459 7. в Европе долгое время была распространена шкала Реомюра введённая в 1730 г Рене Антуаном де Реомюром. Она построена не произвольным образом как шкала Фаренгейта а в соответствии с тепловым расширением спирта (в отношении 1000:1080). 1 градус Реомюра равен 1/80 части температурного интервала между точками таяния льда (0°R) и кипения воды (80°R) т. е. 1°R = 1.25°С 1°C = 0.8°R. но в настоящее время вышла из употребления.

Цельсий и Фаренгейт.

Температуру в России исторически измеряют в градусах Цельсия. Все понимают, что при + 27 о С жарко, а при - 35 о С в школу можно не идти… Если ты померил свою температуру, а на градуснике 36,6 о С, то контрольной не избежать, больным не прикинешься.

А вот в США или Англии нашими градусниками никто пользоваться не умеет, потому что там температуру меряют в градусах Фаренгейта. Почему?


Так бывает, что одна и та же научная проблема независимо друг от друга разрабатывается разными учёными. Так,в восемнадцатом веке над изучением свойств температуры практически одновременно работали несколько ученых, и каждый из них создал свою собственную шкалу, сегодня повсеместно используются только две температурные шкалы - Цельсия и Фаренгейта.


Даниэль Габриэль Фаренгейт - немецкий физик, занимался изготовлением физических инструментов и приборов. Придумал спиртовой и ртутный термометры. Создал свою температурную шкалу.


Андерс Цельсий - шведский астроном и физик. Цельсий первым измерил яркость звезд, установил взаимосвязь между северным сиянием и колебаниями в магнитном поле Земли. Создал свою температурную шкалу.


Чем же отличаются друг от друга эти температурные шкалы?


Когда Фаренгейт задумывал свою температурную шкалу, он хотел, чтобы она была максимально удобной для человека и не имела бы отрицательных значений. Поэтому для нижнего конца шкалы он выбрал самую низкую известную в то время температуру - температуру плавления смеси снега и нашатырного спирта - и обозначил её как 0˚F («ноль» градусов по Фаренгейту).


Цельсий же ввёл 0˚С (по Цельсию) - это температура замерзания воды и таяния льда, а 100˚C - это температура кипения воды.


Градусники «по Фаренгейту» и «по Цельсию» получились очень разные:

Есть разные формулы, по которым можно перевести градусы Цельсия в Фаренгейты и обратно. Но ими обычно никто не пользуется - зачем? Ведь сегодня в любой стране мира можно купить привычный тебе градусник, многие градусники сразу размечены на обе шкалы, да и в Интернете прогнозы погоды публикуют в разных единицах измерения!


А вот из названия этой книги фантаста Рэя Бредбери, весь мир точно знает температуру горения бумаги - 451 о по Фаренгейту.

Вопрос «Что такое шкала температур?» - годится для любого физика - от студента до профессора. Полный ответ на него занял бы целую книгу и мог бы послужить хорошей иллюстрацией изменения взглядов и прогресса физика за последние четыре века.
Температура - это степень нагретости по определенной шкале. Для грубой оценки, без термометра, можно воспользоваться чувствительностью собственной кожи, но наши ощущения тепла и холода ограничены и ненадежны.

Опыт. Чувствительность кожи к теплу и холоду. Этот опыт весьма поучителен. Поставьте три тазика с водой: один с очень горячей, друюй с умеренно теплой, а третий с очень холодной. Опустите минуты на 3 одну руку в горячий, а другую в холодный таз. Затем обе руки опустите в таз с теплой водой. Теперь спросите-ка каждую руку, что она «скажет» вам о температура воды?

Термометр точно говорит нам, насколько вещь горячее или холоднее; с его помощью можно сравнить степень нагретости разных предметов, пользуясь им вновь и вновь, мы можем сопоставить наблюдения, сделанные в разное время. Он снабжен определенной неизменной, воспроизводимой шкалой - характерной принадлежностью любого хорошего прибора. Способ изготовления термометра и сам прибор диктуют нам ту шкалу и систему измерений, которой мы должны пользоваться. Переход от грубых ощущений к прибору со шкалой - не просто усовершенствование нашего всязания. Мы изобретаем и вводим в употребление новое понятие - температуру.
Наше грубое представление о горячем и холодном содержит в зародыше понятие температуры. Исследования показывают, что при нагревании многие из важнейших свойств вещей изменяются, и. для изучения этих изменений нужны термометры. Повсеместное распространение термометров в обиходе отодвинуло на второй план смысл понятия температуры. Мы считаем, что термометр измеряет температуру нашего тела, воздуха или воды в ванне, хотя на самом деле он показывает лишь свою собственную температуру. Мы считаем изменения температуру от 60 до 70° и от 40 до 50° одинаковыми. Однако никаких гарантий того, что они действительно одинаковы, у нас, по-видимому, нет. Нам остается считать их одинаковыми по определению Термометры все же полезны нам как верные слуги. Но действительно ли за их преданным «лицом» - шкалой скрыта Ее Сиятельство Температура.

Простые термометры и шкала Цельсия
Температуру в термометрах показывает расширяющаяся при нагревании капелька жидкости (ртути или окрашенного спирта), помещенная в трубку с делениями. Чтобы шкала одного термометра совпадала с другой, мы берем две точки: таяние льда и кипение воды в стандартных условиях и приписываем им деления 0 и 100, а интервал между ними делим на 100 равных частей. Итак, если по одному термометру температура воды в ванне равна 30°, то любой другой термометр (если он правильно проградулирован) покажет то же самое, даже если у него пувырек и трубка совсем другого размера. В первом термометре ртуть расширяется на 30/100 расширения от точки плавления до точки кипения. Разумно ожидать, что и в других термометрах ртуть будет расширяться в той же степени и они также покажут 30°. Здесь мы полагаемся на Универсальность Природы 2>.
Предположим теперь, что мы взяли другую жидкость, например глицерин. Даст ли это ту же шкалу при прежних точках? Конечно, для согласования со ртутным глицериновый термометр должен иметь 0° при таянии льда и 100° - при кипении воды. Но будут ли показания термометров совпадать при промежуточных температурах? Оказывается нет когда ртутный термометр показывает 50,0° С, глицериновый термометр показывает 47,6° С. По сравнению со ртутным глицериновый термометр на первой половине пути между точкой таяния льда и точкой кипения воды немного отстает. (Можно сделать термометры, которые дадут еще большее расхождение. Например, термометр с парами воды показал бы 12° в точке, где по ртутному 50°!

При этом получается так называемая шкала Цельсия, которая сей-нас широко используется. В США, Англии и некоторых других странах применяется шкала Фаренгейта, на которой точки таяния льда и кипения воды помечаются цифрами 32 и 212. Первоначально шкала Фаренгейта строилась на двух других точках. В качестве нуля бралась температура замораживающей смеси, а числу 96 (число, распадающееся на большое число сомножителей и поэтому удобное в обращении) сопоставлялась нормальная температура человеческого тела. После модификации, когда стандартным точкам были сопоставлены целые числа, температура тела оказалась между 98 и 99. Комнатная температура 68° Р соответствует 20° С. Несмотря на то дто переход от одной шкалы к другой меняет числовое значение единицы температуры, он не затрагивает самой концепции температуры. Последнее международное соглашение ввело еще одно изменение: вместо стандартных точек таяния льда и кипения воды, определяющих шкалу, приняты «абсолютный нуль» и «тройная точка» для воды. Хотя это изменение в определении температуры - фундаментально, в обычную научную работу оно практически не вносит никакой разницы. Для тройной точки число выбрано так, что новая шкала очень хорошо согласуется со старой.
2> Это рассуждение несколько наивно. Стекло ведь тоже расширяется Действует ли расширение стекла на высоту столбика ртути? Что по этой причине, кроме простого расширения ртути, показывает термометр? Допустим, ято два термометра содержат чистую ртуть, но шарики их сделаны из различных сортов стекла с разным расширением. Повлияет ли это на результат?

АБСОЛЮТНАЯ ШКАЛА ТЕМПЕРАТУР.


1. Температура - это мера средней кинетической энергии молекул, характеризующая
степень нагретости тел.

2.Прибор для измерения температуры - термометр .

3. Принцип действия термометра:
При измерении температуры используется зависимость изменения какого-либо макроскопического параметра (объема, давления, электрического сопротивления и т.д.) вещества от температуры.
В жидкостных термометрах - это изменение объема жидкости.
При контакте двух сред происходит передача энергии от более нагретой среды менее нагретой.
В процессе измерения температура тела и термометра приходят в состояние теплового равновесия.

Термометры.
На практике часто используются жидкостные термометры: ртутные (в диапазоне от -35 С до +750 С) и спиртовые (от -80 С до +70 С).
В них используется свойство жидкости изменять свой объем при изменении температуры.
Однако, у каждой жидкости существуют свои особенности изменения объема (расширения) при различных температурах.
В результате сравнения, например, показаний ртутного и спиртового термометров, точное совпадение будет только лишь в двух точках (при температурах 0 С и 100 С).
Этих недостатков лишены
газовые термометры .
Первый газовый термометр был создан франц. физиком Ж. Шарлем.

При соприкосновении двух тел различной температуры происходит передача внутренней энергии от более нагретого тела менее нагретому, и температуры обоих тел выравниваются.
Наступает состояние теплового равновесия, при котором все макропараметры (объем, давление, температура) обоих тел остаются в дальнейшем неизменными при неизменных внешних условиях.
4. Тепловым равновесием называется такое состояние, при котором все макроскопические параметры остаются неизменными сколь угодно долго.


5.Состояние теплового равновесия системы тел характеризуется температурой: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

где k – постоянная Больцмана

Эта зависимость дает возможность ввести новую температурную шкалу – абсолютную шкалу температур, не зависящую от вещества, используемого для измерения температуры.

6.Абсолютная шкала температур - введена англ. физиком У. Кельвином
- нет отрицательных температур

Единица абсолютной температуры в СИ: [T] = 1K (Кельвин)
Нулевая температура абсолютной шкалы – это абсолютный нуль (0К = -273 С), самая низкая температура в природе. АБСОЛЮТНЫЙ НУЛЬ - предельно низкая температура, при которой прекращается тепловое движение молекул.



Связь абсолютной шкалы со шкалой Цельсия

В формулах абсолютная температура обозначается буквой «Т», а температура по шкале Цельсия буквой «t».

История изобретения термометра

Изобретателем термометра принято считать : в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и , засвидетельствовали, что уже в он сделал нечто вроде термобароскопа ( ). Галилей изучал в это время работы , у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту. В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили спирт и удалили сосуд. Действие этого прибора основывалось на расширении тел, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня. Изобретение термометра также приписывают лорду , , Санкториусу, Скарпи, Корнелию Дреббелю ( ), Порте и Саломону де Каус, писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Термометры с жидкостью описаны в первый раз в г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, и они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского . Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точностью. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

В г. ( ) в усовершенствовал воздушный термометр, измеряя не расширение, а увеличение упругости воздуха, приведённого к одному и тому же объёму при разных температурах подливанием ртути в открытое колено; барометрическое давление и его изменения при этом принимались во внимание. Нулём такой шкалы должна была служить «та значительная степень холода», при которой воздух теряет всю свою упругость (то есть современный ), а второй постоянной точкой - температура кипения воды. Влияние атмосферного давления на температуру кипения ещё не было известно Амонтону, а воздух в его термометре не был освобождён от водяных газов; поэтому из его данных абсолютный нуль получается при −239,5° по шкале Цельсия. Другой воздушный термометр Амонтона, выполненный очень несовершенно, был независим от изменений атмосферного давления: он представлял сифонный барометр, открытое колено которого было продолжено кверху, снизу наполнено крепким раствором поташа, сверху нефтью и оканчивалось запаянным резервуаром с воздухом.

Современную форму термометру придал и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре «начала замерзания воды» он показывал 32°, а температура тела здорового человека во рту или под мышкой была эквивалентна 96°. Впоследствии он нашёл, что вода кипит при 212° и эта температура была всегда одна и та же при том же состоянии . Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения.

Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский астроном, геолог и метеоролог в 1742 г. Но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания. В своей работе Цельсий « » рассказал о своих экспериментах, показывающих, что температура плавления льда (100°) не зависит от давления. Он также определил с удивительной точностью, как температура кипения воды варьировалась в зависимости от . Он предположил, что отметку 0 ( воды) можно откалибровать, зная на каком уровне относительно моря находится термометр.

Позже, уже после смерти Цельсия, его современники и соотечественники ботаник и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру плавления льда, а за 100° - кипения воды). В таком виде оказалась очень удобной, получила широкое распространение и используется до нашего времени.

По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим - шкалу перевернул преемник Цельсия М.Штремер и в XVIII веке такой термометр был широко распространён под именем «шведский термометр», а в самой Швеции - под именем Штремера, но известнейший шведский химик Иоганн Якоб в своем труде «Руководства по химии» по ошибке назвал шкалу М. Штремера цельсиевой шкалой и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.

Работы в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, неудобный в употреблении, а его способ разделения на градусы был неточным и неудобным.

После Фаренгейта и Реомюра дело изготовления термометров попало в руки ремесленников, так как термометры стали предметом торговли.

В 1848 г. английский физик (лорд Кельвин) доказал возможность создания абсолютной шкалы температур, нуль которой не зависит от свойств воды или вещества, заполняющего термометр. Точкой отсчета в « » послужило значение : −273,15° С. При этой температуре прекращается тепловое движение молекул. Следовательно, становится невозможным дальнейшее охлаждение тел.

Жидкостные термометры

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это или ), при изменении температуры окружающей среды.

В связи с запретом применения ртути во многих областях деятельности ведется поиск альтернативных наполнений для бытовых термометров. Например, такой заменой может стать сплав .

Об удалении разлившейся ртути из разбитого термометра см. статью

Механические термометры

Термометры этого типа действуют по тому же принципу, что и электронные, но в качестве датчика обычно используется спираль или .

Электрические термометры

Принцип работы электрических термометров основан на изменении контактную разность потенциалов, зависящую от температуры). Наиболее точными и стабильными во времени являются на основе платиновой проволоки или платинового напыления на керамику.

Оптические термометры

Оптические термометры позволяют регистрировать температуру благодаря изменению

Инфракрасные термометры

Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В некоторых странах уже давно имеется тенденция отказа от ртутных термометров в пользу инфракрасных не только в медицинских учреждениях, но и на бытовом уровне.

Технические термометры

Технические термометры используются на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом во всех жизненных сферах.

Выделяют такие виды технических термометров:

    термометры технические жидкостные ТТЖ-М;

    термометры биметаллические ТБ, ТБТ, ТБИ;

    термометры сельскохозяйственные ТС-7-М1;

    термометры максимальные СП-83 М;

    термометры для спецкамер низкоградусные СП-100;

    термометры специальные вибростойкие СП-В;

    термометры ртутные электроконтактные ТПК;

    термометры лабораторные ТЛС;

    термометры для нефтепродуктов ТН;

    термометры для испытаний нефтепродуктов ТИН1, ТИН2, ТИН3, ТИН4.

Поделиться