Формулы по физике раздел кинематика. Кинематика основные понятия, законы и формулы

Основные единицы измерения величин в системе СИ таковы:

  1. единица измерения длины - метр (1 м),
  2. времени - секунда (1 с),
  3. массы - килограмм (1 кг),
  4. количества вещества - моль (1 моль),
  5. температуры - кельвин (1 К),
  6. силы электрического тока - ампер (1 А),
  7. Справочно: силы света - кандела (1 кд, фактически не используется при решении школьных задач).

При выполнении расчетов в системе СИ углы измеряются в радианах.

Если в задаче по физике не указано, в каких единицах нужно дать ответ, его нужно дать в единицах системы СИ или в производных от них величинах, соответствующих той физической величине, о которой спрашивается в задаче. Например, если в задаче требуется найти скорость, и не сказано в чем ее нужно выразить, то ответ нужно дать в м/с.

Для удобства в задачах по физике часто приходится использовать дольные (уменьшающие) и кратные (увеличивающие) приставки. их можно применять к любой физической величине. Например, мм – миллиметр, кт – килотонна, нс – наносекунда, Мг – мегаграмм, ммоль – миллимоль, мкА – микроампер. Запомните, что в физике не существует двойных приставок. Например, мкг – это микрограмм, а не милликилограмм. Учтите, что при сложении и вычитании величин Вы можете оперировать только величинами одинаковой размерности. Например, килограммы можно складывать только с килограммами, из миллиметров можно вычитать только миллиметры, и так далее. При переводе величин пользуйтесь следующей таблицей.

Путь и перемещение

Кинематикой называют раздел механики, в котором движение тел рассматривается без выяснения причин этого движения.

Механическим движением тела называют изменение его положения в пространстве относительно других тел с течением времени.

Всякое тело имеет определенные размеры. Однако, во многих задачах механики нет необходимости указывать положения отдельных частей тела. Если размеры тела малы по сравнению с расстояниями до других тел, то данное тело можно считать материальной точкой . Так при движении автомобиля на большие расстояния можно пренебречь его длиной, так как длина автомобиля мала по сравнению с расстояниями, которое он проходит.

Интуитивно понятно, что характеристики движения (скорость, траектория и т.д.) зависят от того, откуда мы на него смотрим. Поэтому для описания движения вводится понятие системы отсчета. Система отсчета (СО) – совокупность тела отсчета (оно считается абсолютно твердым), привязанной к нему системой координат, линейки (прибора, измеряющего расстояния), часов и синхронизатора времени.

Перемещаясь с течением времени из одной точки в другую, тело (материальная точка) описывает в данной СО некоторую линию, которую называют траекторией движения тела .

Перемещением тела называют направленный отрезок прямой, соединяющий начальное положение тела с его конечным положением. Перемещение есть векторная величина. Перемещение может в процессе движения увеличиваться, уменьшаться и становиться равным нулю.

Пройденный путь равен длине траектории, пройденной телом за некоторое время. Путь – скалярная величина. Путь не может уменьшаться. Путь только возрастает либо остается постоянным (если тело не движется). При движении тела по криволинейной траектории модуль (длина) вектора перемещения всегда меньше пройденного пути.

При равномерном (с постоянной скоростью) движении путь L может быть найден по формуле:

где: v – скорость тела, t – время в течении которого оно двигалось. При решении задач по кинематике перемещение обычно находится из геометрических соображений. Часто геометрические соображения для нахождения перемещения требуют знания теоремы Пифагора.

Средняя скорость

Скорость – векторная величина, характеризующая быстроту перемещения тела в пространстве. Скорость бывает средней и мгновенной. Мгновенная скорость описывает движение в данный конкретный момент времени в данной конкретной точке пространства, а средняя скорость характеризует все движение в целом, в общем, не описывая подробности движения на каждом конкретном участке.

Средняя скорость пути – это отношение всего пути ко всему времени движения:

где: L полн – весь путь, который прошло тело, t полн – все время движения.

Средняя скорость перемещения – это отношение всего перемещения ко всему времени движения:

Эта величина направлена так же, как и полное перемещение тела (то есть из начальной точки движения в конечную точку). При этом не забывайте, что полное перемещение не всегда равно алгебраической сумме перемещений на определённых этапах движения. Вектор полного перемещения равен векторной сумме перемещений на отдельных этапах движения.

  • При решении задач по кинематике не совершайте очень распространенную ошибку. Средняя скорость, как правило, не равна среднему арифметическому скоростей тела на каждом этапе движения. Среднее арифметическое получается только в некоторых частных случаях.
  • И уж тем более средняя скорость не равна одной из скоростей, с которыми двигалось тело в процессе движения, даже если эта скорость имела примерно промежуточное значение относительно других скоростей, с которыми двигалось тело.

Равноускоренное прямолинейное движение

Ускорение – векторная физическая величина, определяющая быстроту изменения скорости тела. Ускорением тела называют отношение изменения скорости к промежутку времени, в течение которого происходило изменение скорости:

где: v 0 – начальная скорость тела, v – конечная скорость тела (то есть спустя промежуток времени t ).

Далее, если иное не указано в условии задачи, мы считаем, что если тело движется с ускорением, то это ускорение остается постоянным. Такое движение тела называется равноускоренным (или равнопеременным). При равноускоренном движении скорость тела изменяется на одинаковую величину за любые равные промежутки времени.

Равноускоренное движение бывает собственно ускоренным, когда тело увеличивает скорость движения, и замедленным, когда скорость уменьшается. Для простоты решения задач удобно для замедленного движения брать ускорение со знаком «–».

Из предыдущей формулы, следует другая более распространённая формула, описывающая изменение скорости со временем при равноускоренном движении:

Перемещение (но не путь) при равноускоренном движении рассчитывается по формулам:

В последней формуле использована одна особенность равноускоренного движения. При равноускоренном движении среднюю скорость можно рассчитывать, как среднее арифметическое начальной и конечной скоростей (этим свойством очень удобно пользоваться при решении некоторых задач):

С расчетом пути все сложнее. Если тело не меняло направления движения, то при равноускоренном прямолинейном движении путь численно равен перемещению. А если меняло – надо отдельно считать путь до остановки (момента разворота) и путь после остановки (момента разворота). А просто подстановка времени в формулы для перемещения в этом случае приведет к типичной ошибке.

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изменяется по такому закону:

Аналогичные формулы получаются для остальных координатных осей.

Свободное падение по вертикали

На все тела, находящиеся в поле тяготения Земли, действует сила тяжести. В отсутствие опоры или подвеса эта сила заставляет тела падать к поверхности Земли. Если пренебречь сопротивлением воздуха, то движение тел только под действием силы тяжести называется свободным падением. Сила тяжести сообщает любым телам, независимо от их формы, массы и размеров, одинаковое ускорение, называемое ускорением свободного падения. Вблизи поверхности Земли ускорение свободного падения составляет:

Это значит, что свободное падение всех тел вблизи поверхности Земли является равноускоренным (но не обязательно прямолинейным) движением. Вначале рассмотрим простейший случай свободного падения, когда тело движется строго по вертикали. Такое движение является равноускоренным прямолинейным движением, поэтому все изученные ранее закономерности и фокусы такого движения подходят и для свободного падения. Только ускорение всегда равно ускорению свободного падения.

Традиционно при свободном падении используют направленную вертикально ось OY. Ничего страшного здесь нет. Просто надо во всех формулах вместо индекса «х » писать «у ». Смысл этого индекса и правило определения знаков сохраняется. Куда направлять ось OY – Ваш выбор, зависящий от удобства решения задачи. Вариантов 2: вверх или вниз.

Приведем несколько формул, которые являются решением некоторых конкретных задач по кинематике на свободное падение по вертикали. Например, скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v 0 , время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Горизонтальный бросок

При горизонтальном броске с начальной скоростью v 0 движение тела удобно рассматривать как два движения: равномерное вдоль оси ОХ (вдоль оси ОХ нет никаких сил препятствующих или помогающих движению) и равноускоренного движения вдоль оси OY.

Скорость в любой момент времени направлена по касательной к траектории. Ее можно разложить на две составляющие: горизонтальную и вертикальную. Горизонтальная составляющая всегда остается неизменной и равна v x = v 0 . А вертикальная возрастает по законам ускоренного движения v y = gt . При этом полная скорость тела может быть найдена по формулам:

При этом важно понять, что время падения тела на землю никоим образом не зависит от того, с какой горизонтальной скоростью его бросили, а определяется только высотой, с которой было брошено тело. Время падения тела на землю находится по формуле:

Пока тело падает, оно одновременно движется вдоль горизонтальной оси. Следовательно, дальность полета тела или расстояние, которое тело сможет пролететь вдоль оси ОХ, будет равно:

Угол между горизонтом и скоростью тела легко найти из соотношения:

Также иногда в задачах могут спросить о моменте времени, при котором полная скорость тела будет наклонена под определенным углом к вертикали . Тогда этот угол будет находиться из соотношения:

Важно понять, какой именно угол фигурирует в задаче (с вертикалью или с горизонталью). Это и поможет вам выбрать правильную формулу. Если же решать эту задачу координатным методом, то общая формула для закона изменения координаты при равноускоренном движении:

Преобразуется в следующий закон движения по оси OY для тела брошенного горизонтально:

При ее помощи мы можем найти высоту на которой будет находится тело в любой момент времени. При этом в момент падения тела на землю координата тела по оси OY будет равна нулю. Очевидно, что вдоль оси OХ тело движется равномерно, поэтому в рамках координатного метода горизонтальная координата изменятся по закону:

Бросок под углом к горизонту (с земли на землю)

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Минимальная скорость тела брошенного под углом к горизонту – в наивысшей точке подъёма, и равна:

Максимальная скорость тела брошенного под углом к горизонту – в моменты броска и падения на землю, и равна начальной. Это утверждение верно только для броска с земли на землю. Если тело продолжает лететь ниже того уровня, с которого его бросали, то оно будет там приобретать все большую и большую скорость.

Сложение скоростей

Движение тел можно описывать в различных системах отсчета. С точки зрения кинематики все системы отсчета равноправны. Однако кинематические характеристики движения, такие как траектория, перемещение, скорость, в разных системах оказываются различными. Величины, зависящие от выбора системы отсчета, в которой производится их измерение, называют относительными. Таким образом, покой и движение тела относительны.

Таким образом, абсолютная скорость тела равна векторной сумме его скорости относительно подвижной системы координат и скорости самой подвижной системы отсчета. Или, другими словами, скорость тела в неподвижной системе отсчета равна векторной сумме скорости тела в подвижной системе отсчета и скорости подвижной системы отсчета относительно неподвижной.

Равномерное движение по окружности

Движение тела по окружности является частным случаем криволинейного движения. Такой вид движения также рассматривается в кинематике. При криволинейном движении вектор скорости тела всегда направлен по касательной к траектории. То же самое происходит и при движении по окружности (см. рисунок). Равномерное движение тела по окружности характеризуется рядом величин.

Период – время, за которое тело, двигаясь по окружности, совершает один полный оборот. Единица измерения – 1 с. Период рассчитывается по формуле:

Частота – количество оборотов, которое совершило тело, двигаясь по окружности, в единицу времени. Единица измерения – 1 об/с или 1 Гц. Частота рассчитывается по формуле:

В обеих формулах: N – количество оборотов за время t . Как видно из вышеприведенных формул, период и частота величины взаимообратные:

При равномерном вращении скорость тела будет определяется следующим образом:

где: l – длина окружности или путь, пройденный телом за время равное периоду T . При движении тела по окружности удобно рассматривать угловое перемещение φ (или угол поворота), измеряемое в радианах. Угловой скоростью ω тела в данной точке называют отношение малого углового перемещения Δφ к малому промежутку времени Δt . Очевидно, что за время равное периоду T тело пройдет угол равный 2π , следовательно при равномерном движении по окружности выполняются формулы:

Угловая скорость измеряется в рад/с. Не забывайте переводить углы из градусов в радианы. Длина дуги l связана с углом поворота соотношением:

Связь между модулем линейной скорости v и угловой скоростью ω :

При движении тела по окружности с постоянной по модулю скоростью изменяется только направление вектора скорости, поэтому движение тела по окружности с постоянной по модулю скоростью является движением с ускорением (но не равноускоренным), так как меняется направление скорости. В этом случае ускорение направлено по радиусу к центру окружности. Его называют нормальным, или центростремительным ускорением , так как вектор ускорения в любой точке окружности направлен к ее центру (см. рисунок).

Модуль центростремительного ускорения связан с линейной v на этом сайте. Для этого нужно всего ничего, а именно: посвящать подготовке к ЦТ по физике и математике, изучению теории и решению задач по три-четыре часа каждый день. Дело в том, что ЦТ это экзамен, где мало просто знать физику или математику, нужно еще уметь быстро и без сбоев решать большое количество задач по разным темам и различной сложности. Последнему научиться можно только решив тысячи задач.

  • Выучить все формулы и законы в физике, и формулы и методы в математике . На самом деле, выполнить это тоже очень просто, необходимых формул по физике всего около 200 штук, а по математике даже чуть меньше. В каждом из этих предметов есть около десятка стандартных методов решения задач базового уровня сложности, которые тоже вполне можно выучить, и таким образом, совершенно на автомате и без затруднений решить в нужный момент большую часть ЦТ. После этого Вам останется подумать только над самыми сложными задачами.
  • Посетить все три этапа репетиционного тестирования по физике и математике. Каждый РТ можно посещать по два раза, чтобы прорешать оба варианта. Опять же на ЦТ, кроме умения быстро и качественно решать задачи, и знания формул и методов необходимо также уметь правильно спланировать время, распределить силы, а главное правильно заполнить бланк ответов, не перепутав ни номера ответов и задач, ни собственную фамилию. Также в ходе РТ важно привыкнуть к стилю постановки вопросов в задачах, который на ЦТ может показаться неподготовленному человеку очень непривычным.
  • Успешное, старательное и ответственное выполнение этих трех пунктов, а также ответственная проработка итоговых тренировочных тестов , позволит Вам показать на ЦТ отличный результат, максимальный из того, на что Вы способны.

    Нашли ошибку?

    Если Вы, как Вам кажется, нашли ошибку в учебных материалах, то напишите, пожалуйста, о ней на электронную почту (). В письме укажите предмет (физика или математика), название либо номер темы или теста, номер задачи, или место в тексте (страницу) где по Вашему мнению есть ошибка. Также опишите в чем заключается предположительная ошибка. Ваше письмо не останется незамеченным, ошибка либо будет исправлена, либо Вам разъяснят почему это не ошибка.

    Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

    Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика , термодинамика и молекулярная физика , электричество . Их и возьмем!

    Основные формулы по физике динамика, кинематика, статика

    Начнем с самого простого. Старое-доброе любимое прямолинейное и равномерное движение.

    Формулы кинематики:

    Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

    После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

    Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!


    Основные формулы молекулярной физики и термодинамики

    Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

    Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева - все эти милые сердцу формулы собраны ниже.

    Кстати! Для всех наших читателей сейчас действует скидка 10% на .


    Основные формулы по физике: электричество

    Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

    И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

    На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов студенческого сервиса . Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

    Прежде всего, следует заметить, что речь будет идти о геометрической точке, то есть области пространства, не имеющей размеров. Именно для этого абстрактного образа (модели) и справедливы все представленные ниже определения и формулы. Однако для краткости я в дальнейшем буду часто говорить о движении тела , объекта или частицы . Это я делаю только для того, чтобы Вам легче было читать. Но всегда помните, что речь идет о геометрической точке.

    Радиус-вектор точки - это вектор, начало которого совпадает с началом системы координат, а конец - с данной точкой. Радиус-вектор обозначается, как правило, буквой r . К сожалению некоторые авторы обозначают его буквой s . Настоятельно советую не использовать обозначение s для радиус-вектора. Дело в том, что подавляющее большинство авторов (как отечественных, так и зарубежных) используют букву s для обозначения пути, который является скаляром и к радиус-вектору, как правило, отношения не имеет. Если вы будете обозначать радиус-вектор как s , то легко можете запутаться. Еще раз, мы, как и все нормальные люди, будем использовать следующие обозначения: r - радиус-вектор точки, s - путь, пройденный точкой.

    Вектор перемещения (часто говорят просто - перемещение ) - это вектор , начало которого совпадает с той точкой траектории, где было тело, когда мы начали изучать данное движение, а конец этого вектора совпадает с той точкой траектории, где мы это изучение закончили. Будем обозначать этот вектор как Δr . Использование символа Δ очевидно: Δr - это разность между радиус-вектором r конечной точки изучаемого отрезка траектории и радиус-вектором r 0 точки начала этого отрезка (рис. 1), то есть Δr = r r 0 .

    Траектория - это линия, вдоль которой движется тело.

    Путь - это сумма длин всех участков траектории, последовательно проходимых телом при движения. Обозначается либо ΔS, если речь идет об участке траектории, либо S, если речь идет о всей траектории наблюдаемого движения. Иногда (редко) путь обозначают и другой буквой, например, L (только не обозначайте его как r, мы уже об этом говорили). Запомните! Путь - это положительный скаляр ! Путь в процессе движения может только увеличиваться .

    Средняя скорость перемещения v ср

    v ср = Δr /Δt.

    Мгновенная скорость перемещения v - это вектор, определяемый выражением

    v = dr /dt.

    Средняя скорость пути v ср - это скаляр, определяемый выражением

    V ср = Δs/Δt.

    Часто встречаются и другие обозначения, например, .

    Мгновенная скорость пути v - это скаляр, определяемый выражением

    Модуль мгновенной скорости перемещения и мгновенная скорость пути - это одно и то же, поскольку dr = ds.

    Среднее ускорение a

    a ср = Δv /Δt.

    Мгновенное ускорение (или просто, ускорение ) a - это вектор, определяемый выражением

    a =dv /dt.

    Касательное (тангенциальное) ускорение a τ (нижний индекс - это греческая строчная буква тау) - это вектор , являющийся векторной проекцией мгновенного ускорения на касательную ось .

    Нормальное (центростремительное) ускорение a n - это вектор , являющийся векторной проекцией мгновенного ускорения на ось нормали .

    Модуль касательного ускорения

    | a τ | = dv/dt,

    То есть это - производная модуля мгновенной скорости по времени.

    Модуль нормального ускорения

    | a n | = v 2 /r,

    Где r - величина радиуса кривизны траектории в точке нахождения тела.

    Важно! Хочу обратить внимание на следующее. Не путайтесь с обозначениями, касающимися касательного и нормального ускорений! Дело в том, что в литературе по этому поводу традиционно наблюдается полная чехарда.

    Запомните!

    a τ - это вектор касательного ускорения,

    a n - это вектор нормального ускорения.

    a τ и a n являются векторными проекциями полного ускорения а на касательную ось и ось нормали соответственно,

    A τ - это проекция (скалярная!) касательного ускорения на касательную ось,

    A n - это проекция (скалярная!) нормального ускорения на ось нормали,

    | a τ |- это модуль вектора касательного ускорения,

    | a n | - это модуль вектора нормального ускорения.

    Особенно не удивляйтесь, если, читая в литературе о криволинейном (в частности, вращательном) движении, Вы обнаружите, что автор под a τ понимает и вектор, и его проекцию, и его модуль. То же самое относится и к a n . Все, как говорится, «в одном флаконе». И такое, к сожалению, сплошь и рядом. Даже учебники для высшей школы не являются исключением, во многих из них (поверьте - в большинстве!) царит полная неразбериха по этому поводу.

    Вот так, не зная азов векторной алгебры или пренебрегая ими, очень легко полностью запутаться при изучении и анализе физических процессов. Поэтому знание векторной алгебры является наиглавнейшим условием успеха в изучении механики. И не только механики. В дальнейшем, при изучении других разделов физики, Вы неоднократно в этом убедитесь.

    Мгновенная угловая скорость (или просто, угловая скорость ) ω - это вектор, определяемый выражением

    ω = dφ /dt,

    Где dφ - бесконечно малое изменение угловой координаты (dφ - вектор!).

    Мгновенное угловое ускорение (или просто, угловое ускорение ) ε - это вектор, определяемый выражением

    ε = dω /dt.

    Связь между v , ω и r :

    v = ω × r .

    Связь между v, ω и r:

    Связь между | a τ |, ε и r:

    | a τ | = ε · r.

    Теперь перейдем к кинематическим уравнениям конкретных видов движения. Эти уравнения надо выучить наизусть .

    Кинематическое уравнение равномерного и прямолинейного движения имеет вид:

    r = r 0 + v t,

    Где r - радиус-вектор объекта в момент времени t, r 0 - то же в начальный момент времени t 0 (в момент начала наблюдений).

    Кинематическое уравнение движения с постоянным ускорением имеет вид:

    r = r 0 + v 0 t + a t 2 /2, где v 0 скорость объекта в момент t 0 .

    Уравнение для скорости тела при движении с постоянным ускорением имеет вид:

    v = v 0 + a t.

    Кинематическое уравнение равномерного движения по окружности в полярных координатах имеет вид:

    φ = φ 0 + ω z t,

    Где φ - угловая координата тела в данный момент времени, φ 0 - угловая координата тела в момент начала наблюдения (в начальный момент времени), ω z - проекция угловой скорости ω на ось Z (обычно эта ось выбирается перпендикулярно плоскости вращения).

    Кинематическое уравнение движения по окружности с постоянным ускорением в полярных координатах имеет вид:

    φ = φ 0 + ω 0z t + ε z t 2 /2.

    Кинематическое уравнение гармонических колебаний вдоль оси X имеет вид:

    Х = А Cos (ω t + φ 0),

    Где A - амплитуда колебаний, ω - циклическая частота, φ 0 - начальная фаза колебаний.

    Проекция скорости точки, колеблющейся вдоль оси X, на эту ось равна:

    V x = − ω · A · Sin (ω t + φ 0).

    Проекция ускорения точки, колеблющейся вдоль оси X, на эту ось равна:

    А x = − ω 2 · A · Cos (ω t + φ 0).

    Связь между циклической частотой ω, обычной частотой ƒ и периодом колебаний T:

    ω = 2 πƒ = 2 π/T (π = 3,14 - число пи).

    Математический маятник имеет период колебаний T, определяемый выражением:

    В числителе подкоренного выражения - длина нити маятника, в знаменателе - ускорение свободного падения

    Связь между абсолютной v абс, относительной v отн и переносной v пер скоростями:

    v абс = v отн + v пер.

    Вот, пожалуй, и все определения и формулы, которые могут понадобиться при решении задач на кинематику. Приведенная информация носит только справочный характер и не может заменить электронную книгу, где доступно, подробно и, надеюсь, увлекательно изложена теория этого раздела механики.

    Сессия приближается, и пора нам переходить от теории к практике. На выходных мы сели и подумали о том, что многим студентам было бы неплохо иметь под рукой подборку основных физических формул. Сухие формулы с объяснением: кратко, лаконично, ничего лишнего. Очень полезная штука при решении задач, знаете ли. Да и на экзамене, когда из головы может «выскочить» именно то, что накануне было жесточайше вызубрено, такая подборка сослужит отличную службу.

    Больше всего задач обычно задают по трем самым популярным разделам физики. Это механика , термодинамика и молекулярная физика , электричество . Их и возьмем!

    Основные формулы по физике динамика, кинематика, статика

    Начнем с самого простого. Старое-доброе любимое прямолинейное и равномерное движение.

    Формулы кинематики:

    Конечно, не будем забывать про движение по кругу, и затем перейдем к динамике и законам Ньютона.

    После динамики самое время рассмотреть условия равновесия тел и жидкостей, т.е. статику и гидростатику

    Теперь приведем основные формулы по теме «Работа и энергия». Куда же нам без них!


    Основные формулы молекулярной физики и термодинамики

    Закончим раздел механики формулами по колебаниям и волнам и перейдем к молекулярной физике и термодинамике.

    Коэффициент полезного действия, закон Гей-Люссака, уравнение Клапейрона-Менделеева - все эти милые сердцу формулы собраны ниже.

    Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы .


    Основные формулы по физике: электричество

    Пора переходить к электричеству, хоть его и любят меньше термодинамики. Начинаем с электростатики.

    И, под барабанную дробь, заканчиваем формулами для закона Ома, электромагнитной индукции и электромагнитных колебаний.

    На этом все. Конечно, можно было бы привести еще целую гору формул, но это ни к чему. Когда формул становится слишком много, можно легко запутаться, а там и вовсе расплавить мозг. Надеемся, наша шпаргалка основных формул по физике поможет решать любимые задачи быстрее и эффективнее. А если хотите уточнить что-то или не нашли нужной формулы: спросите у экспертов студенческого сервиса . Наши авторы держат в голове сотни формул и щелкают задачи, как орешки. Обращайтесь, и вскоре любая задача будет вам «по зубам».

    КИНЕМАТИКА

    Основные понятия, законы и формулы.

    Кинематика - раздел механики, в котором изучается механическое движение тел без учета причин, вызывающих движение.

    Механическим движением называют изменение положения тела в пространстве с течением времени относительно других тел.

    Простейшим механическим движением является движение материальной точки - тела, размеры и форму которого можно не учитывать при описании его движения.

    Движение материальной точки характеризуют траекторией, длиной пути, перемещением, скоростью и ускорением.

    Траекторией называют линию в пространстве, описываемую точкой при своем движении.

    Расстояние , пройденное телом вдоль траектории движения, - путь(S).

    Перемещение - направленный отрезок, соединяющий начальное и конечное положение тела.

    Длина пути - величина скалярная, перемещение - величина векторная.

    Средняя скорость - это физическая величена, равная отношению вектора перемещения к промежутку времени, за которое произошло перемещение:

    Мгновенная скорость или скорость в данной точке траектории - это физическая величина, равная пределу, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Dt:

    Величину характеризующую изменение скорости за единицу времени, называют средним ускорением :

    .

    Аналогично понятию мгновенной скорости вводится понятие мгновенного ускорения:

    При равноускоренном движении ускорение постоянно.

    Простейший вид механического движения-прямолинейное движение точки с постоянным ускорением.

    Движение с постоянным ускорением называется равнопеременным; в этом случае:

    ; ; https://pandia.ru/text/78/108/images/image014_3.gif" width="80" height="22">; ; https://pandia.ru/text/78/108/images/image017_1.gif" width="194" height="42">; ;

    Связь между линейными и угловыми величинами при вращательном движении :

    ; ; https://pandia.ru/text/78/108/images/image024_1.gif" width="57" height="23 src=">.

    Любое сложное движение можно рассматривать как результат сложения простых движений. Результирующее перемещение равно геометрической сумме и находится по правилу сложения векторов. Скорость тела и скорость системы отсчета так же складывается векторно.

    При решении задач на те или иные разделы курса, кроме общих правил решения, приходится учитывать некоторые дополнения к ним, связанные со спецификой самих разделов.

    Задачи по кинематике , разбираемые в курсе элементарной физики, включают в себя: задачи о равнопеременном прямолинейном движении одной или нескольких точек, задачи о криволинейном движении точки на плоскости. Мы рассмотрим каждый из этих типов задач отдельно.

    Прочитав условие задачи, нужно сделать схематический чертеж, на котором следует изобразить систему отсчета, и указать траекторию движения точки.

    После того как выполнен чертеж, с помощью формул:

    ; ; https://pandia.ru/text/78/108/images/image027_0.gif" width="93" height="25">; .

    Подстановкой в них развёрнутых выражений для Sn, S0, vn, v0 и т. д. и заканчивается первая часть решения.

    Пример 1 . Велосипедист ехал из одного города в другой. Половину пути он проехал со скоростью v1 = 12 км/ч далее половину оставшегося времени он ехал со скоростью v2 = 6 км/ч, а затем до конца пути шел пешком со скоростью v3 = 4 км/ч. Определить среднюю скорость велосипедиста на всем пути.

    а) Эта задача на равномерное прямолинейное движение одного тела. Представляем ввиде схемы. При составлении ее изображаем траекторию движения и выбираем на ней начало отсчета (точка 0). Весь путь разбиваем на три отрезка S1,S2, S3, на каждом из них указываем скорости v1, v2, v3 и отмечаем время движения t1, t2, t3.

    S = S1 + S2 + S3, t = t1 + t2 + t3.

    б) Составляем уравнения движения для каждого отрезка пути:

    S1 = v1t1; S2 = v2t2; S3 = v3t3 и записываем дополнительные условия задачи:

    S1 = S2 + S3; t2 = t3; .

    в) Читаем еще раз условие задачи, выписываем числовые значения известных величин и, определив число неизвестных в полученной системе уравнений (их 7: S1, S2, S3, t1, t2, t3, vср), решаем ее относительно искомой величины vср.

    Если при решении задачи полностью учтены все условия, но в составленных уравнениях число неизвестных получается больше числа уравнений, это означает, что при последующих вычислениях одно из неизвестных сократится, такой случай имеет место и в данной задаче.

    Решение системы относительно средней скорости дает:

    .

    г) Подставив числовые значения в расчётную формулу, получим:

    ; vср 7 км/ч.

    Напоминаем, что числовые значения удобнее подставлять в окончательную расчетную формулу, минуя все промежуточные. Это экономит время на решение задачи и предотвращает дополнительные ошибки в расчётах.

    Решая задачи на движение тел, брошенных вертикально вверх, нужно обратить особое внимание на следующее. Уравнения скорости и перемещения для тела, брошенного вертикально вверх, дают общую зависимость v и h от t для всего времени движения тела. Они справедливы (со знаком минус) не только для замедленного подъема вверх, но и для дальнейшего равноускоренного падения тела, поскольку движение тела после мгновенной остановки в верхней точке траектории происходит с прежним ускоронием. Под h при этом всегда подразумевают перемещение движущейся точки по вертикали, то есть ее координату в данный момент времени - расстояние от начала отсчета движения до точки.

    Если тело брошено вертикально вверх со скоростью V0, то время tпод и высота hmax его подъема равны:

    ; .

    Кроме того, время падения этого тела в исходную точку равно времени подъема на максимальную высоту (tпад = tпод), а скорость падения равна начальной скорости бросания (vпад = v0).

    Пример 2 . Тело брошено вертикально вверх с начальной скоростью v0 = 3,13 м/с. Когда оно достигло верхней точки полета, из того же начального пункта с такой же начальной скоростью бросили второе тело. Определите, на каком расстоянии от точки бросания встретятся тела; сопротивление воздуха не учитывать.

    Решение . Делаем чертеж. Отмечаем на нем траекторию движения первого и второго тела. Выбрав начало отсчета в точке, указываем начальную скорость тел v0, высоту h, на которой произошла встреча (координату y=h), и время t1 и t2 движения каждого тела до момента встречи.

    Уравнение перемещения тела, брошенного вверх, позволяет найти координату движущегося тела для любого момента времени независимо от того, поднимается ли тело вверх или падает после подъема вниз, поэтому для первого тела

    ,

    а для второго

    .

    Третье уравнение составляем, исходя из условия, что второе тело бросили позднее первого на время максимального подъема:

    Решая систему трех уравнений относительно h, получаем:

    ; ; https://pandia.ru/text/78/108/images/image017_1.gif" width="194" height="42">; ,

    где и ; https://pandia.ru/text/78/108/images/image042.gif" width="58" height="22 src=">.gif" width="381" height="278">

    Прямоугольную систему координат выбираем так, чтобы ее начало совпало с точкой бросания, а оси были направлены вдоль поверхности Земли и по нормали к ней в сторону начального смещения снаряда. Изображаем траекторию снаряда, его начальную скорость , угол бросания a, высоту h, горизонтальное перемещение S, скорость в момент падения (она направлена по касательной к траектории в точке падения) и угол падения j (углом падения тела называют угол между касательной к траектории, проведенной в точку падения, и нормалью к поверхности Земли).

    Движение тела, брошенного под углом к горизонту, можно представить как результат сложения двух прямолинейных движений: одного-вдоль поверхности Земли (оно будет равномерным, поскольку сопротивление воздуха не учитывается) и второго-перпендикулярно поверхности Земли (в данном случае это будет движение тела, брошенного вертикально вверх). Для замены сложного движения двумя простыми разложим (по правилу параллелограмма) скорости и https://pandia.ru/text/78/108/images/image047.gif" width="60" height="22">и - для скорости и vx и vy - для скорости .

    а, б) Составляем уравнение скорости и перемещения для их проекций по каждому направлению. Так как в горизонтальном направлении снаряд летит равномерно, то его скорость и координаты в любой момент времени удовлетворяют уравнениям

    и . (2)

    Для вертикального направления:

    (3)

    и . (4)

    В момент времени t1, когда снаряд упадет на землю, его координаты равны:

    В последнем уравнении перемещение h взято со знаком "минус", так как за время движения снаряд сместится относительно уровня отсчета 0 высоты в сторону противоположную направлению, принятому за положительное.

    Результирующая скорость в момент падения равна:

    В составленной системе уравнений пять неизвестных, нам нужно определить S и v.

    При отсутствии сопротивления воздуха, скрость падения тел равна начальной скорости бросания независимо от того, под каким углом было брошено тело, лишь бы точки бросания и падения находились на одном уровне. Учитывая, что горизонтальная составляющая скорости с течением времени не изменяется, легко установить, что в момент падения скорость тела образует с горизонтом такой же угол, как и в момент бросания.

    д) Решая уровнения (2), (4) и (5) относительно начального угла бросания a получим:

    . (10)

    Поскольку угол бросания не может быть мнимым, то это выражение имеет физический смысл лишь при условии, что

    ,

    то есть,

    откуда следует, что максимальное перемещение снаряда по горизонтальному направлению равно:

    .

    Подставляя выражение для S = Smax в формулу (10), получим для угла a, при котором дальность полета наибольшая:

    Поделиться