Современные проблемы науки и образования. Использование методов in vitro в селекции растений В условиях in vitro


В отдаленной гибридизации находят применение такие методы культуры изолированных тканей, как оплодотворение in vitro, эмбриокультура (выращивание изолированных зародышей на искусственных питательных средах), клональное микроразмножение ценных гибридов, а также получение гаплоидов in vitro и криосохранение.

Оплодотворение in vitro (преодоление прогамной несовместимости) проводится в том случае, когда невозможно осуществить оплодотворение между выбранными парами в естественных условиях. Это вызвано несколькими причинами: 1) физиологические (несоответствие во времени созревания пыльцы и т.д.); 2) морфологические (короткая пыльцевая трубка или блокирование роста ее на разных этапах развития и т.д.). Оплодотворение in vitro можно осуществить двумя способами: а) культивирование на искусственной агаризованной питательной среде завязи с нанесенной на нее готовой пыльцой; б) завязь вскрывается и на питательную среду переносятся кусочки плаценты с семяпочками, вблизи которых или непосредственно на ткани плаценты культивируется готовая пыльца. Визуально определить, прошло оплодотворение in vitro или нет, можно по быстроувеличивающимся в размерах семяпочкам. Сформировавшийся зародыш, как правило, не переходит в состояние покоя, а сразу прорастает и дает начало гибридному поколению. Плацентарное оплодотворение in vitro позволило преодолеть несовместимость в скрещивании сортов культурного табака N. tabacum с дикими видами N. rosulata и N. debneyi и сделало возможным получение межвидовых гибридов табака в опытах М. Ф. Терновского и др. (1976), Шинкаревой (1986).

Преодоление постгамной несовместимости. Постгамная несовместимость при отдаленной гибридизации возникает после оплодотворения. Часто при этом образуются щуплые невсхожие семена. Причиной может быть расхождение во времени развития зародыша и эндосперма. Из-за слабого развития эндосперма зародыш бывает неспособен к нормальному прорастанию. В таких случаях из зрелой щуплой зерновки изолируют зародыш и выращивают его в питательной среде.

Выращивание зародышей в искусственной питательной среде называется эмбриокультурой. Среда для выращивания зрелого зародыша может быть простой, без добавок физиологичеки активных веществ (например, среда Уайта) или любая другая, содержащая минеральные соли и сахарозу. При более отдаленных скрещиваниях нарушения в развитии зародыша могут наблюдаться уже на ранних этапах, что выражается в отсутствии дифференцировки, замедленном росте. В этом случае культура зародыша состоит из двух этапов – эмбрионального роста зародыша, во время которого продолжается его дифференцировка, и прорастания подросшего зародыша. Для первого этапа требуется более сложная по составу среда с повышенным содержанием сахарозы, с добавками различных аминокислот, витаминов и гормонов.

Применение эмбриокультуры в селекции приобретает в последнее время большое значение для получения отдаленных гибридов зерновых, злаковых и других сельскохозяйственных культур. Показана возможность увеличения выхода пшенично-ржаных гибридов путем доращивания незрелых зародышей, а также использования эмбриокультуры для преодоления постгамной несовместимости при гибридизации пшеницы с колосняком.

Метод эмбриокультуры находит все более широкое применение в межвидовой гибридизации овощных растений. Для лука разработаны приемы выращивания in vitro абортивных зародышей от гибридных семян с разных этапов эмбриогенеза, выращивание зародышей от частично фертильных межвидовых гибридов. Культура изолированных зародышей используется в селекции томатов и других овощных растений.

Исследована гормональная регуляция роста и развития зародышей томата in vitro. Обсуждается возможность применения эмбриокультуры для получения отдаленных гибридов подсолнечника, изучаются факторы, контролирующие рост и развитие in vitro зародышей подсолнечника, выделенных в разные сроки после опыления.

Культура изолированных зародышей как вспомогательный метод при отдаленной гибридизации применяется не только для преодоления постгамной несовместимости, но также с целью микроразмножения ценных гибридов. В этом случае микроразмножение идет путем каллусогенеза, индукции морфогенеза и получения растений-регенерантов из каллусной ткани. Техника клонирования незрелых зародышей позволяет размножать ценные генотипы растений на ранних стадиях жизненного цикла. Еще одна возможность применения культуры зародышей–использование ее в клеточной селекции.

Клональное микроразмножение отдаленных гибридов. Эмбриокультура дает возможность вырастить гибридные растения из неполноценных зародышей. Однако выход гибридных растений мал, и гибриды часто бывают стерильны. Иногда, например, при селекции гречихи, трудно воспроизвести в потомстве уникальные генотипы из-за перекрестного опыления культуры. Поэтому перед исследователями часто встает задача – размножить и сохранить полученные растения. В этом помогает метод клонального микроразмножения. Размножают гибриды путем активации развития меристемы пазушных почек (черенкованием стерильных побегов), адвентивными почками или регенерацией растений из каллусной ткани, в частности полученной при культивировании зародышей.

Получение гаплоидов in vitro и использование их в селекции. Роль гаплоидных растений в селекции очень велика. Применение их позволяет быстрее найти нужную комбинацию, сокращает время для создания сорта. Гаплоиды используются для получения стабильных гомозиготных линий. Для мутагенеза также удобнее использовать гаплоиды, поскольку на гаплоидном уровне облегчается отбор рецессивных мутаций.

В диплоидных растениях мутации редко затрагивают оба аллельных гена в гомологичных хромосомах. Особь обычно гетерозиготна (два гена различаются), при этом проявляется действие только доминантного (но не рецессивного) гена. Поскольку мутации чаще рецессивны, чем доминантны, их довольно сложно выявить. В гаплоидных же растениях, которые содержат только одну из каждой пары гомологичных хромосом, мутации проявляются немедленно. Селекция на гаплоидном уровне позволяет вести прямой отбор не только доминантных, но и рецессивных признаков.

Гаплоидные особи стерильны, но можно искусственно удвоить набор их хромосом с помощью колхицина и получить диплоидные гомозиготные растения.

Гаплоиды могут возникать спонтанно, но частота их спонтанного возникновения очень мала. Искусственным путем с Использованием методов in vitro удается получить большие количества гаплоидных растений. Существует три способа получения гаплоидов с использованием метода культуры изолированных тканей:

андрогенез – получение гаплоидных растений на искусственной питательной среде из изолированных пыльников и микроспор.

гиногенез – получение гаплоидных растений на искусственной питательной среде из изолированных семяпочек;

партеногенез – получение гаплоидов из гибридного зародыша, у которого из-за несовместимости хромосом родителей потеряны отцовские хромосомы.

Образовавшиеся в результате элиминации хромосом отцовского генома гаплоидные эмбриоиды культивируют на искусственных питательных средах и получают гаплоидные растения. Сорта ячменя Исток и Одесская-15 были получены комбинацией партеногенетического метода с культурой изолированных зародышей за четыре года вместо обычных 10–12 лет. Методом культуры пыльников из сортов и гибридов мягкой и твердой пшеницы в НПО «Элита Поволжья» за четыре года получено более 2,5 тыс. дигаплоидных линий, которые характеризуются гомогенностью и стабильностью.

Продолжается разработка технологии получения гаплоидов посредством культуры пыльников пшеницы, ячменя, кукурузы, озимой ржи, картофеля. В культуре пыльников возможны два пути образования гаплоидных растений. Первый – образование растений путем эмбриогенеза в пыльцевых зернах. При этом внутри пыльников из отдельных пыльцевых зерен возникают эмбриоиды. Они прорастают и дают гаплоидные растения. Второй – образование каллуса из клеток пыльника. В дальнейшем в результате морфогенеза из каллусных клеток регенерируют растения. В этом случае образовавшиеся растения не всегда бывают гаплоидными и часто отличаются по плоидности. До конца не выяснено, образуются ли они от полиплоидизированных гаплоидных клеток или от слившихся клеток.

Гаплоиды, полученные in vitro, могут применяться не только в практической селекции, но и в работах по генетической инженерии, а также по клеточной селекции. Пыльцевые зерна являются в некоторых случаях более удобными, чем протопласты, объектами для опытов по генетической трансформации.

Криосохранение растений

Криосохранение соматических клеток растений в жидком азоте (температура – 196° С) – новое направление в биотехнологии, которое широко стало развиваться с начала 70-х годов XX столетия. Цель данной технологии заключается в сохранении в культуре in vitro генофонда, а также в обеспечении селекционеров в любое время генотипом, имеющим искомые признаки: необходимая пыльца для проведения гибридизации; уникальные и единичные семена, в том числе не выносящие обезвоживания; трансформированные, мутантные, гибридные клетки разных видов растений, способных к морфогенезу in vitro; зиготические и соматические зародыши и т.д. В настоящее время разработаны условия криосохранения для культивируемых клеток более 30 видов, каллусных культур (около 10 видов), изолированных протопластов (8 видов), сохранения меристем (25 видов) и кончиков стебля (13 видов). Приоритет в этом направлении принадлежит Институту физиологии растений РАН и, в частности, отделу культуры тканей и морфогенеза, возглавляемому проф. Р. Г. Бутенко.

При проведении работ по криосохранению необходимо, прежде всего, учитывать специфику растительных клеток: отбирать мелкие клетки, с маленькой вакуолью и пониженным содержанием воды; разрабатывать в каждом отдельном случае подходы замораживания и последующего оттаивания растительных клеток. При криосохранении встречается ряд трудностей, одна из которых связана с защитой замораживаемых клеток и тканей от осмотического стресса и механического разрушения структур в результате образования и роста кристаллов льда внутри клетки. Одновременно с этим необходимо правильно подбирать условия, обеспечивающие высокую выживаемость клеток при оттаивании и рекультивации.

Несмотря на многообразие работ в этом направлении, в них все же наметились общие приемы, лежащие в основе криосохранения: обработка клеток перед замораживанием, применение криопротекторов, соблюдение определенного режима замораживания в интервале от 0 до –40° С (в редких случаях до -70° С), а также специальные предосторожности при оттаивании объектов.

Процесс криоконсервации, как правило, начинается с подготовки культуры клеток к замораживанию. Это может быть достигнуто несколькими способами, предусматривающими культивирование клеток на питательных средах, содержащих различные осмотически активные вещества: маннит или сорбит в концентрации 2–6%, аминокислоты и среди них, в первую очередь, пролин, чье значение для связывания воды в клетках растений широко известно, а также у-аминомасляная кислота.

Подбор криопротекторов, веществ, уменьшающих повреждение клеток от осмотического и механического стресса, проводят эмпирически по принципу наименьшей токсичности и оптимального эффекта. Среди всех известных криопротекторов выделяются такие легко проникающие в клетки вещества, как диметилсульфоксид (ДМСО, 5–10%), глицерин (10–20%), а также непроникающие высокомолекулярные–поливинилпиролидон (ПВП), декстран, полиэтиленгликоль (ПЭГ) с молекулярной массой 6000.

Большое значение при криосохранении имеет правильно подобранный режим замораживания от 0 до –40° С. Как правило, для всех объектов устанавливается скорость замораживания 0,5–1 °С в минуту и всю эту работу проводят на специальном оборудовании, обеспечивающем программное замораживание. Такие приборы выпускает специальное конструкторское технологическое бюро с опытным производством при Институте проблем криобиологии и криомедицины (г. Харьков).

Таким образом, медленное замораживание и использование криопротекторов позволяет освободить клетку от свободной воды, и при –40° С клетки становятся полностью обезвоженными, что дает возможность проводить дальнейшее замораживание, а именно погружать ампулы с растительным материалом в жидкий азот.

Хранение материала в жидком азоте практически не лимитировано. Например, в криобанке Института физиологии растений РАН хранятся клетки моркови, которые находятся в жидком азоте около 20 лет, меристемы картофеля – более 10 лет и др.

Оттаивание и проверка жизнеспособности клеток после хранения в жидком азоте является последним этапом технологии криосохранения. Если замораживание осуществляют медленно, постепенно, то оттаивание должно быть проведено как можно быстрее. Для этого ампулы помещают в водяную баню с температурой 40°, а иногда и 60° С и выдерживают до полного исчезновения последнего кристаллика льда.

Для определения жизнеспособности клеток после оттаивания применяют наиболее простой, быстрый и вполне удовлетворительный способ – окраска витальным красителем (0,1%-ным феносафранином или 0,25%-ным раствором сини Эванса), в результате которой мертвые клетки окрашиваются, а живые нет. Окончательным критерием, безусловно, служит четкое возобновление роста и деления клеток при рекультивации на искусственных питательных средах после оттаивания.

Экспериментально было показано, что клетки после хранения в жидком азоте не теряют способности к делению, регенерации растений, не уменьшается продуктивность синтеза вторичных метаболитов (клетки продуценты) и т.д. Так, Институтом физиологии растений РАН совместно с НПО по картофелеводству разработаны методы криосохранения меристем четырех сортов картофеля и показана возможность из 20% хранящихся меристем регенерировать целые растения, которые при высадке в поле не отличались по всем признакам, включая темпы роста и продуктивность, от обычных пробирочных растений (С. Манжулин и др., 1982). Более подробно о технике криосохранения можно узнать из обзорных работ А. С. Попова.

Таким образом, технология, связанная с криосохранением растительных объектов, развивается и постоянно совершенствуется. Несомненно, эта технология имеет свое будущее, так как уже сегодня криобанки могут значительно облегчить работу селекционеров, предоставив им возможность широко использовать пул генов сортов, в том числе старой селекции и диких видов, а также исчезающих видов растений.



В. В. Роговая, М. А. Гвоздев

ОСОБЕННОСТИ МИКРОКЛОНАЛЬНОГО РАЗМНОЖЕНИЯ КОСТОЧКОВЫХ КУЛЬТУР В УСЛОВИЯХ IN VITRO

В работе представлен обзор, в котором рассматриваются особенности методов микроклонального размножения косточковых плодовых культур в системе in vitro. Особое внимание уделено методу размножения пазушными почками и методу регенерации адвентивных побегов из листовых эксплантов вишни, черешни, персика и абрикоса. Рассмотрены вопросы оздоровления растений от различных патогенов и тестирования растительного материала косточковых культур на наличие вирусных инфекций.

Впервые микроклональное размножение провел французский ученый Жорж Морель на орхидеях в 50-х годах ХХ века. В своих работах он использовал технику культивирования апикальной меристемы растений. Растения, полученные таким образом, были свободны от вирусной инфекции.

В нашей стране исследования по оздоровлению растений методом меристем и по клональному микроразмножению начались в 60-х годах в Институте физиологии растений им. К. А. Тимирязева АН СССР .

Микроклональное размножение - получение in vitro растений, генетически идентичных исходному экспланту (метод вегетативного размножения растений в культуре in vitro). В основе микроразмножения лежит уникальное свойство соматической растительной клетки - тотипотентность - способность клеток полностью реализовать генетический потенциал целого организма .

В настоящее время все большую актуальность приобретают различные методы микроклонального размножения сельскохозяйственных культур (прежде всего вегетативно размножаемых) в системе in vitro: размножение пазушными и адвентивными почками, непрямой морфогенез, соматический эмбриогенез.

Использование этих методов дает возможность:

Ускорять селекционный процесс, в результате этого сроки получения товарной продукции сокращаются до 2-3 лет вместо 10-12;

Получать за короткий срок большое количество оздоровленного, безвирусного материала, генетически идентичного материнскому растению;

Работать в лабораторных условиях и поддерживать активно растущие растения круглый год;

Размножать растения практически без контакта с внешней средой, что исключает воздействие неблагоприятных абиотических и биотических факторов;

Получать максимальное число растений с единицы площади;

В короткий срок получать большое число растений трудноразмножае-мых или вегетативно неразмножаемых;

При выращивании растений с длительной ювенильной фазой можно ускорять переход от ювенильной к репродуктивной фазе развития;

Длительно (в течение 1-3 лет) сохранять растительный материал в условиях in vitro (без пассирования на свежую среду) ,

Создавать банки длительного хранения ценных форм растений и отдельных их органов;

Разрабатывать методы криосохранения оздоровленного in vitro материала .

Этапы микроклональногоразмножения косточковых плодовых культур и тестирование на наличие вирусных инфекций

Процесс микроклонального размножения включает несколько этапов. Основными из них являются :

1-й этап - введение экспланта в культуру in vitro;

2-й этап - микроразмножение;

3-й этап - процесс укоренения микропобегов;

4-й этап - осуществление выхода укорененных растений из стерильных условий в нестерильные.

Важным этапом в методике микроразмножения растений in vitro является выращивание безвирусных маточных форм растений в вегетационных домиках или изолированных боксах в зимних теплицах, в условиях, недоступных для переносчиков вирусов. Растения-доноры эксплантов для последующего введения в культуру in vitro должны быть протестированы на наличие вирусных, ми-коплазменных и бактериальных инфекций с помощью методов ПЦР-диагностики либо молекулярной гибридизации, либо иммуноферментного анализа (ИФА) .

Метод ИФА позволяет в сжатые сроки выявлять подавляющее большинство вирусов, заражающих косточковые культуры: вирусы карликовости сливы, некротической кольцевой пятнистости косточковых, потивирус шарки слив, не-повирусы скручивания листьев черешни. Клоны, оказавшиеся свободными от контактных вирусов по результатам проверки методом ИФА, подвергают затем основному тестированию, включающему серологические тесты в сочетании с тестом на растениях-индикаторах. Растениям, оказавшимся по результатам тестирования свободными от вирусов и других регламентируемых патогенов, присваивается категория «безвирусных» базисных клонов. В случае выявления инфекции исходные растения могут подвергнуть оздоровлению. Для оздоровления растений косточковых культур от вирусов наиболее целесообразно сочетать методы суховоздушной термотерапии и культуры in vitro. Если с помощью культуры изолированных апикальных меристем не удается освободиться от тестируемых вирусов, используют методы хемотерапии, основанные на введении в питательные среды химических веществ, ингибирующих развитие вирусной инфекции в растениях in vitro .

Иногда для активного выявления бактериальной микрофлоры среды обогащают различными органическими добавками, например гидролизатом казеина, который провоцирует развитие сапрофитных микроорганизмов . Оценку зараженности проводят визуально через 7-10 дней. «Чистые» экспланты помещают на питательные среды для дальнейшего культивирования. Практикуют на этой ступени и применение сред, лишенных ростовых веществ .

Введение в культуру in vitro и микроразмножение плодовых косточковых культур

При клональном микроразмножении плодовых косточковых культур в качестве источника эксплантов обычно используют верхушечные и боковые почки, а также меристематические верхушки. Вычленение верхушечной меристемы проводят по общепринятым методикам после ступенчатой стерилизации растительного материала .

Для микроклонального размножения косточковых культур используют различные среды: для микроразмножения вишни - среды Пиерика, Готре, Уайта, Хеллера , для вишни и сливы - среду Розенберга, модифицированную для плодовых культур и для сливы - среду Лепуавра и В5 . Но наиболее подходящей для микроклонального размножения вишни, черешни и сливы является питательная среда Мурасиге-Скуга (МС) .

В зависимости от этапа микроклонального размножения плодовых косточковых культур к питательным средам добавляют 6-бензиламинопурин (6-БАП) в концентрациях 0,2-2 мг/л . На этапе введения в культуру in vitro используют более низкую концентрацию цитокинина - 0,2 мг/л БАП . Для индукции пролиферации пазушных почек с целью получения максимального числа побегов микрорастения вишни культивируют с добавлением БАП, в концентрациях 0,5-2 мг/л , микрорастения сливы 0,5 - 1 мг/л БАП .

Процесс укоренения микропобегов

Особого внимания требует этап укоренения. Процесс укоренения in vitro побегов плодовых косточковых культур зависит от сортовых особенностей , от числа проведенных пассажей, от концентрации и типа ауксина, от способа его применения . Для получения полностью сформированных микрорастений плодовых косточковых культур из среды исключается 6-БАП, препятствующий процессам ризогенеза, и в среды вводятся ауксины, в основном - в-индолил-3-масляная кислота (ИМК) . Установлено, что оптимум концентраций ИМК в составе питательной среды находится в пределах 0,5-1 мг/л . Присутствие в среде ИМК в концентрации 2 мг/л вызывает образование гипертрофированных корней .

Совместное введение в среду для укоренения препарата рибав (1 мл/л) и традиционных фитогормонов ауксинов [ИМК и в-индолилуксусной кислоты (ИУК) по 0,5 мг/л каждого] повышает процент укоренения побегов ряда сортов косточковых культур .

При сравнительном изучении индукторов корнеобразования: ИМК, ИУК и а-нафтилуксусной кислоты (НУК), была выявлена высокая эффективность ИУК в концентрации 6,0 мг/л . Наибольшее число укоренившихся микрочеренков вишни было получено на среде, содержащей НУК . Однако при этом на базальном участке побегов происходило интенсивное разрастание каллуса, что затрудняло перенос пробирочных растений с корнями в нестерильные условия.

Для эффективного укоренения пробирочных растений косточковых культур большое значение имеет не только тип стимулятора, но и способ его аппликации. Помимо введения ауксинов в питательную среду, для индукции ризоге-неза используют предварительное замачивание побегов в стерильном водном растворе ИМК (25-30) мг/л при экспозиции 12-24 часа . Проведенные эксперименты показали, что обработка микрочеренков водным раствором ИМК более эффективна, чем введение этого регулятора в культураль-ную среду. Массовое появление первых придаточных корней при применении предварительной обработки индуктором ризогенеза отмечалось на 20-25 день . Еще одним способом индукции ризогенеза является обработка побегов плодовых косточковых культур тальковой ауксинсодержащей пудрой ИМК с концентрацией 0,125%, 0,25% и ИУК с концентрацией 0,25%, 0,5% . При использовании гормональной пудры отмечалась высокая эффективность и технологичность применения индукторов ризогенеза . Но использование тальковой пудры ИМК с разными концентрациями ауксина выявило сортовую специфику при укоренении микрочеренков сливы .

Процесс ризогенеза наиболее интенсивно протекает на модифицированных средах МС и Уайта . По другим данным лучшей средой для корнеобразования являются среды с макроэлементами по Хеллеру с добавлением витаминов и разбавленная вдвое среда МС с пониженным содержанием сахарозы 15 мг/л и с исключением мезоинозита, способствующего образованию каллусной ткани. Однако в большинстве работ для укоренения микропобегов косточковых культур используется среда Мурасиге и Скуга .

Методы микроклонального размножения

Существует несколько способов микроклонального размножения растений in vitro:

Методы размножения пазушными почками;

Методы размножения адвентивными почками;

Непрямой морфогенез;

Соматический эмбриогенез.

Для любого типа регенерации in vitro можно выделить четыре группы факторов, определяющих ее успех: генотип и состояние исходного родительского растения; условия и методы культивирования; состав питательных сред; особенности введения экспланта в стерильную культуру .

Влияние генотипа на эффективность микроразмножения

Наиболее существенное влияние на эффективность микроразмножения оказывает генотип. Реакция растений на условия асептического культивирования зависит от сортовых особенностей и объясняется разной регенераци-онной способностью сортов плодовых и ягодных культур . Например, при использовании метода клонального микроразмножения для ускоренного размножения новых сортов вишни сортовые особенности оказались доминирующими факторами в способности растений к микроразмножению .

Сортовые различия проявлялись как на стадии пролиферации, так и на стадии корнеобразования .

Среди эксплантов разных сортов одного и того же вида плодовых растений нередко наблюдается разная степень проявления реакции на включаемые в среду регуляторы роста, что, видимо, отражает, в какой-то мере эндогенное содержание ростовых веществ, которое является генетически обусловленным признаком вида или сорта . В то же время реализация морфогенетического потенциала в культуре зародышей in vitro, у гибридов между видами Cerasus vulgaris, C. maackii, C. fruticosa, Padus racemosa в основном определялась генотипом и в меньшей степени зависела от состава питательной среды .

Условия культивирования

Еще одним фактором, определяющим успех микроразмножения растений, являются условия их культивирования. Оптимальными условиями культивирования косточковых плодовых культур являются: температура 22-26 °С для вишни, черешни и 26-28 °С - для сливы , освещенность 2000-5000 лк - для вишни, черешни и 3500 лк для сливы при 16-часовом фотопериоде. Микрорастения должны выращиваться в климатических камерах или в комнатах с регулируемым режимом.

Необходимо отметить, что у сортов вишни на этапе пролиферации увеличение коэффициента размножения и повышение доли побегов, пригодных к укоренению, может обеспечить прием чередования минеральных составов питательных сред и использование ламп синего света (ЛП 1) . Большое количество побегов косточковых культур - до 30 - может образовываться при горизонтальной ориентации регенерантов . Для увеличения коэффициента размножения в первых пассажах конгломераты почек и побегов косточковых культур можно не разделять на отдельные единицы, а переносить на свежую питательную среду целиком. При использовании этого приема величина коэффициента размножения резко возрастает и может достигать 40-70 за пассаж в зависимости от сорта .

Методразмножения пазушными почками непрямой морфогенез

Самым надежным методом микроклонального размножения является метод регенерации растений через развитие пазушных почек . Преимущество этого метода состоит в сравнительно быстром размножении исходного генотипа, при этом обеспечивается наиболее высокая фенотипическая и генотипиче-ская стабильность. Потенциальные возможности такого способа микроразмножения in vitro реализуются при добавлении в питательные среды цитокининов, которые подавляют развитие верхушечной почки стебля и стимулируют образование пазушных почек .

В основе процесса микроклонального размножения вишни методом культуры изолированных верхушечных меристем лежит явление снятия апикального доминирования, что способствует последующему развитию уже существующих меристем и обеспечивает генетическую однородность посадочного мате-

риала. Снятие апикального доминирования достигается путем добавления ци-токининов. Для многих сортов вишни характерна высокая митотическая активность апекса, что способствует формированию разветвленного конгломерата почек и боковых микропобегов .

Генетическая стабильность получаемого in vitro материала зависит от модели размножения. Процесс размножения плодовых косточковых растений связан с пролиферацией пазушных меристем. Генетическая стабильность - неотъемлемое свойство меристемы, которое может быть сохранено in vitro, если последняя культивируется в условиях, ингибирующих формирование каллуса. Если используются среды, стимулирующие образование каллуса, то может возникнуть генетическая вариабельность .

Для получения более высоких коэффициентов размножения питательные среды часто обогащают кроме препаратов цитокининовой природы веществами из группы ауксинов, стимулирующими развитие каллусной ткани. Комбинации этих двух препаратов применяют для индукции органогенеза в каллусных тканях. В системе каллус-побег организованная структура побега может воздействовать на процессы органогенеза, стимулируя меристематизацию каллусных клеток, которые могут давать начало органам с измененными свойствами. Простое варьирование содержания регуляторов роста, добавляемых к питательной среде для достижения максимальной пролиферации клеток, может оказывать влияние на генетическую стабильность получаемого материала .

Метод размножения адвентивными почками и непрямой морфогенез

Адвентивными почками называются почки, возникшие непосредственно из тканей и клеток эксплантов растений, обычно их не образующих . Адвентивные (или придаточные) почки образуются из меристемных зон, чаще всего сформированных вторично из тканей каллуса. Адвентивные почки могут возникнуть из меристемы и немеристемных тканей (листьев, стеблей). Образование адвентивных почек у многих видов растений индуцировано высоким отношением цитокининов к ауксинам в питательной среде.

Регенерация побегов, корней или эмбриоидов из соматических растительных клеток экспланта может происходить через непрямую регенерацию - образование каллуса и формирование побегов, или через «прямую» регенерацию, когда клетки экспланта становятся способными к регенерации без формирования каллусных тканей .

Адвентивные побеги могут образовываться на эксплантах листьев, черешков, корней и других органов растений различных видов косточковых и плодовых культур . Получение побегов непосредственно из эксплантов в ряде случаев используют для клонирования растений, но при этом могут появляться генетически нестабильные растения . Поэтому указанный метод регенерации растений можно применять для индукции генетически разнообразных растений.

Побеги-регенеранты могут быть индуцированы из различных частей листовой пластинки, но наибольшей способностью к регенерации обладают ткани

основания листа, поскольку в этой зоне листовой пластинки расположены наиболее активные меристематические клетки. Необходимо также учитывать, что морфогенетический потенциал листьев увеличивается по мере их расположения к верхушке стебля. Придаточные побеги лучше регенерируют из молодой меристематической ткани развивающихся листьев. Однако при использовании более старых листьев значительно чаще возникают генетически измененные побеги .

Для регенерации побегов плодовых косточковых культур, таких как вишня, черешня, персик, абрикос, из исходных эксплантов (целых листьев и их сегментов) используются различные среды: Мурасиге-Скуга (МБ), Ллойда и Мак Коуна (WPM), Драйвера и Куниюки (DKW), Курена и Лепуав-ра (QL) .

Для экспериментов по адвентивной регенерации вишни и черешни чаще всего используется среда Ллойда и Мак Коуна для древесных растений - Woody Plant Medium (WPM), дополненная различными стимуляторами роста . Из цитокининов в основном используют 6-БАП, тидиазурон (TDZ), из ауксинов - НУК , ИМК , 2,4-дихлорфеноксиуксусная кислота (2,4-Д) .

Важно отметить, что среди зарубежных исследователей нет единого мнения об эффективности применения в регенерации побегов TDZ по сравнению с БАП, о типе экспланта (целые листья, с нанесенными на них поперечными разрезами или сегментированные) и о способе культивирования экс-плантов (абаксиальной или адаксиальной поверхностью вверх).

Высокий процент регенерации наблюдался у целых листовых эксплантов черешни (с нанесенными на них поперечными разрезами вдоль центральной жилки листа), которые помещали абаксиальной (нижней) поверхностью вверх на среду WPM, дополненную 2,27 или 4,54 |М TDZ + 0,27 |М НУК .

С другой стороны, в работе показано, что БАП более эффективен, чем TDZ, в регенерации растений из листьев вишни и черешни а также то, что БАП и НУК в концентрации 2 мг/л и 1мг/л являются оптимальной комбинацией регуляторов роста растений вишни и черешни. Наибольшая частота регенерации была получена на среде WPM, хотя она стимулировала каллусогенез больше, чем среды MS, QL, DKW. Выявлена зависимость эффективности каллусообра-зования от типа листовых сегментов. Так, наиболее высокие показатели каллу-сообразования отмечены на средних листовых сегментах; наиболее низкие - на верхушечных сегментах и прямая регенерация (без образования каллуса) отмечена на базовых сегментах.

Адвентивная регенерация вишни черной (Prunus serótina Ehrh.) происходила чаще при культивировании эксплантов листьев на среде WPM, дополненной TDZ по сравнению с модифицированной средой DKW .

На эффективность адвентивной регенерации дикой вишни (Prunus avium L.) существенное влияние оказывал размер экспланта. Результаты показали, что размер листового экспланта имеет критическое значение для образования адвентивных побегов, листья длиной 3-5 мм формировали наибольшее число адвентивных побегов. Для адвентивной регенерации дикой вишни использовалась среда WPM, дополненная 0,54 тМ НУК и 4,4 тМ TDZ .

Специальная предварительная обработка до культивирования (замачивание с добавлением 5 мг/л 2,4-Д в течение одного дня) оказалась эффективной для индукции адвентивных побегов из листовых эксплантов черешни . Последующее культивирование эксплантов листьев на регенерационной агаризо-ванной среде WP, дополненной 5 мг/л TDZ, повышало эффективность адвентивной регенерации черешни. Молодые листовые экспланты черешни показали более высокую способность к регенерации, чем старые.

Необходимо отметить существенное влияние этиленовых ингибиторов на адвентивную регенерацию листьев различных сортов абрикоса. Например, в работе было показано, что применение этиленовых ингибиторов (тиосульфата серебра или аминоэтоксивинилглицина) совместно с низким содержанием канамицина увеличивает адвентивную регенерацию более чем на 200%. Использование чистого агара также улучшало регенерацию из листьев абрикоса по сравнению с использованием агар-геля или агарозы. В данной работе исследования проводились на средах LQ, DKW, дополненные TDZ и НУК. Способ культивирования листьев - адаксиальной поверхностью к среде.

Итальянскими исследователями был разработан метод адвентивной регенерации из целых листьев персика, которые инкубировались в темноте на средах, дополненных 6-БАП и НУК. В исследованиях использовались комбинации макросолей и микросолей различных сред по MS, Quoirin, Rugini и Muganu, оба цитокинина - 6-БАП и TDZ, а также способ культивирования листьев - адаксиальной поверхностью в контакте с регенерационной средой. В основании черешков листьев развивался каллус. Адвентивные побеги появлялись на этом каллусе после переноса на среду, не содержащую ауксин, и культивирования на свету. Морфогенетическая способность каллуса сохранялась в течение нескольких месяцев. В данных исследованиях адвентивные побеги персика появлялись путем непрямого морфогенеза.

Непрямой морфогенез включает вторичную дифференциацию почек из каллусных тканей. Для образования каллуса, из которого затем формируются побеги, используют разнообразные экспланты. Для получения морфогенного каллуса у многолетних растений следует брать верхушки побегов или выделенные из них участки меристематических тканей. Такая система не рекомендуется для микроклонального размножения растений in vitro из-за генетической нестабильности. Непрямой морфогенез имеет значение для изучения сомаклональ-ной изменчивости и получения сомаклональных вариантов .

В Великобритании, в отделе физиологии экспериментальной станции Мейдстон, изучалась регенерация растений из стеблевого и листового каллуса у подвоя черешни Кольт. Инициацию каллуса осуществляли на среде Му-расиге-Скуга, содержащей 2,0-10,0 мг/л НУК. Образовавшийся каллус переносили на среду для регенерации, которая содержала БАП в концентрации 0,5 мг/л. Удалось осуществить регенерацию побегов из каллусов у данного подвоя черешни .

В Центральной генетической лаборатории имени И. В. Мичурина в культуре пассированных каллусных тканей, полученных из однолетних побегов вишни, отмечалось корнеобразование. При пересеве на среду с регуляторами роста наблюдалось появление меристематических образований .

Соматический эмбриогенез

Еще одним методом микроклонального размножения растений in vitro является соматический эмбриогенез - процесс формирования зародышеподоб-ных структур из соматических (неполовых) клеток. Соматический зародыш - независимая двухполюсная структура, физически не прикрепленная к ткани, из которой образуется структура, в которой одновременно развиваются апексы стебля и корня.

Образование соматических зародышей в культуре клеток, тканей и органов может происходить прямым или непрямым путем. Прямой соматический эмбриогенез - формирование вегетативного зародыша из одной или нескольких клеток ткани экспланта без стадии образования промежуточного каллуса. Непрямой эмбриогенез состоит из нескольких этапов: помещение экспланта в культуру, последующая стимуляция роста каллуса и формирование из каллус-ных клеток предзародышей, перенос каллуса на питательную среду без факторов роста для формирования биполярных зародышей из предзародышей .

В работе исследовалась возможность регенерации растений из каллусов, полученных из корней подвоев вишни. Каллус получали либо из срезанных корешков, либо из целых растений, выращенных в стерильных условиях при микроклонировании побегов вишни. У подвоя вишни Кольт каллус, полученный из корней интактных растений, образовывал побеги и эмбриоидо-подобные структуры. Каллусы вишни культивировали на среде Мурасиге-Скуга, дополненной БАП, ГК и НУК. Частота образования побегов была выше, чем у анализированной параллельно яблони. Растения-регенеранты были размножены через культуру тканей и пересажены в почву. Саженцы растений-регенерантов, полученные из каллусов подвоя вишни по фенотипу, не отличались от исходных подвоев.

Индукцию соматического эмбриогенеза у сортов вишни (Prunus cerasus L.) наблюдали при культивировании эксплантов на среде Мурасиге-Скуга, дополненной различными комбинациями ауксинов и цитокининов . Соматический эмбриогенез в основном происходил, когда использовали комбинацию 2,4-Д и кинетин. Индукция соматического эмбриогенеза также отмечена при добавлении 0,1 мг/л ИМК в индуктивную среду. Использование НУК или 6-БАП уменьшало индукцию соматического эмбриогенеза и увеличивало частоту непрямой регенерации у сортов вишни (Prunus cerasus L.).

На сегодняшний день самым надежным способом получения генетически идентичного потомства считается микроклональное размножение плодовых косточковых культур пазушными почками по сравнению с соматическим эмбриогенезом, размножением адвентивными почками и непрямым морфогенезом.

1. Полевой В. В., Чиркова Т. В., Лутова Л. А. и др. Практикум по росту и устойчивости растений: Учебное пособие. СПб., 2001. С. 208.

2. Сорокина И. К., Старичкова Н. И., Решетникова Т. Б., Гринь Н. А. Основы биотехнологии растений. Культура растительных клеток и тканей: Учебное пособие. 2002. С. 45.

3. Чернец А. М., Абраменко Н. М., Стаканова Р. В. Разработка метода длительного хранения in vitro безвирусных клонов плодовых пород и земляники // Тезисы докладов международной конференции: Биология культивируемых клеток и биотехнология. Новосибирск, 1988.

4. Романова Н. П., Ульянова Е. К. К вопросу о хранении мериклонов земляники in vitro // Научно-технический бюллетень Научно-исследовательского института растениеводства имени Н. И. Вавилова. Л., 1990. Вып. 204. С. 75-79.

5. Орлова С. Ю. Биологические особенности и селекционная ценность сортов вишни в условиях северо-запада России: Автореф. дис. ... канд. биол. наук. СПб., 2002. С. 20.

6. Niino Takao, Tashiro Kazuo, Suzuki Mitsuteru, Ohuchi Susumu, Magoshi Jun, Akihama Tomoya. Cryopreservation of in vitro grown shoot tips of cherry and sweet cherry by one-step vitrification // Scientia Horticulturae. 1997. Vol. 70. P. 155-163.

7. Высоцкий В. А. Культура изолированных тканей и органов плодовых растений: оздоровление и микроклональное размножение // Сельскохозяйственная биология: Ежемесячный научно-теоретический журнал. М., 1983. № 7. С. 42-47.

8. Фаустов В. В., Олешко Е. В, Жаркова И. В., Асадулаев З. М., Шарафутдинов Х.

B., Исмаил Х. Микроклональное размножение вишни // Известия ТСХА. М., 1988. Выпуск 5. С. 131-148.

9. Биотехнология растений: культура клеток // Пер. с англ. В. И. Негрука / Под ред. Р. Г. Бутенко. М., 1989. С. 233.

10. Деменко В. И., Трушечкин В. Г. Размножение вишни методом in vitro // Сельскохозяйственная биология: Ежемесячный научно-теоретический журнал. М., 1983. № 7.

11. Кашин В. И., Борисова А. А., Приходько Ю. Н., Суркова О. Ю., Упадышев М. Т. и др. Технологический процесс получения безвирусного посадочного материала плодовых и ягодных культур: Методические указания. М., 2001. С. 97.

12. Шипунова А. А. Клональное микроразмножение плодовых растений: Автореф. дис. ... канд. сельскохозяйственных наук. М., 2003. С. 24.

13. Трушечкин В. Г, Высоцкий В. А., Олешко Е. В. Микроклональное размножение сортов и подвоев косточковых культур: Методические указания. М., 1983. С. 16.

14. Lane W. D. Regeneration of pear plants from shoot meristemtips // Plant Sci. Letters. 1979. Vol. 16. № 2/3. Р. 337-342.

15. FossardR. A., Bourne R. A. Reducing tissue culture costs for commercial propagation // Tissue culture for horticultural purposes. Acta Hort. 1977. Vol. 78. Р. 37-44.

17. Олешко Е. В. Особенности клонального микроразмножения подвоев и сортов вишни: Автореф. дис. ... канд. биол. наук. М., 1985. С. 15.

18. Хаак Э. Р., Нууст Ю. О. Клональное микроразмножение косточковых культур // Садоводство и виноградарство. М., 1989. № 1. С. 27-29.

19. Дудченко О. П. Регенерация в культуре изолированных меристем сливы // Тезисы докладов Международной конференции «Биология культивируемых клеток и биотехнология 2». Новосибирск, 1988. С. 358.

20. Корнацкий С. А., Высоцкий В. А., Трушечкин В. Г. Проблемы клонального микроразмножения косточковых культур // Достижения в плодоводстве в Нечерноземной зоне РСФСР: Сб. науч. трудов. М., 1991. С. 104-116.

21. Индукция морфогенеза и тканевая селекция плодовых и ягодных культур: Методические рекомендации / Под ред. В. Е. Перфильева. 1996. С. 73.

22. Свитайло А. М., Бондаренко П. Е., Шевчук Н. С. Клональное микроразмножение подвоев и сортов плодовых культур // Тезисы докладов Международной конференции «Биология культивируемых клеток и биотехнология 2». Новосибирск, 1988. С. 346.

23. Трушечкин В. Г., Высоцкий В. А., Корнацкий С. А. Клональное микроразмножение косточковых культур в системе производства оздоровленного посадочного материала // Тезисы докладов Международной конференции: Биология культивируемых клеток и биотехнология 2. Новосибирск. 1988. С. 319-320.

24. Hammatt N., Grant N. J. Micropropagation of mature British wild cherry // Plant Cell, Tissue and Organ Culture. 1997. Vol. 47. P. 103-110.

25. Джигадло М. И. Использование биотехнологических и биофизических методов в селекции и сорторазведении плодовых и ягодных культур: Автореф. дис. ... канд. сельскохозяйственных наук. Мичуринск, 2003. С. 25.

26. Ruzic D., Saric M., Cerovic R., Culafic I. Relationship between the concentration of macroelements, their uptake and multiplication of cherry rootstock Gisela 5 in vitro // Plant Cell Tissue Organ Cult. 2000. Vol. 63. P. 9-14.

27. Корнацкий С. А. Особенности клонального микроразмножения сливы в системе оздоровленного посадочного материала: Автореф. дис. ... канд. сельскохозяйственных наук. М., 1991. С. 24.

28. Джигадло М. И., Джигадло Е. Н. Размножение вишни методом верхушечных меристем // Улучшение сортимента и прогрессивные приемы возделывания плодовых и ягодных культур: Сборник. Тула, 1988. С. 65-68.

29. Высоцкий В. А., Олешко Е. В. Совершенствование питательной среды для кло-нального микроразмножения вишни // Агротехника и сортоизучение плодовых культур: Сб. науч. трудов. М., 1985. С. 72-76.

30. Чернец А. М. Влияние минерального питания на интенсивность пролиферации сортов вишни in vitro // Тезисы докладов Международной конференции «Биология культивируемых клеток и биотехнология 2». Новосибирск, 1988. С. 343.

31. Неделчева С., Ганева Д. Размножение in vitro на три вегетативни подложки от рода Prunus // Растен. науки. 1985. Т. 22. № 8. С. 98-104.

32. Boleriola-Lucas C., Millins M. G. Micropropogatiоn of two French prune cultiwars (Prunus domesticaL.) // Agronomie. 1984. Vol. 4. № 5. Р. 473-477.

33. Высоцкий В. А., Олешко Е. В. Использование микропрививок при клональном микроразмножении косточковых культур // Сельскохозяйственная биология. М., 1988. № 4. С. 75-77.

34. Плаксина Т. В. Использование биотехнологии в селекции вишни на Алтае // Мат-лы научно-практической конференции, посвященной 70-летию НИИСС им. М. А. Ли-савенко: Проблемы устойчивого развития садоводства Сибири. Барнаул, 2003. С. 108-110.

35. Высоцкий В. А. Действие некоторых регуляторов роста на изолированные мери-стематические верхушки черной смородины // Плодоводство и ягодоводство нечерноземной полосы: Сборник. М. 1979. Том IX. С. 101-107.

36. ЛутоваЛ. А. Биотехнология высших растений: Учебник. СПб., 2003. С. 227.

37. Высоцкий В. А. О генетической стабильности при клональном микроразмножении плодовых и ягодных культур // Сельскохозяйственная биология. 1995. № 5. С. 57-63.

38. De Klerk G. -J. Arnholdt-Schmitt B., Lieberei R. Regeneration of roots, shoots and embryos: physiological, biochemical and molecular aspects // Biologia Plantarum. Vol. 39. № 1. 1997. Р. 53-66.

39. Tang H., Ren Z., Reustle G., Krczal G. Plant regeneration from leaves of sweet and sour cherry cultivars // Scientia Horticulturae. 2002. Vol. 93. P. 235-244.

40. Bhagwat B., David Lane W. In vitro shoot regeneration from leaves of sweet cherry (Prunus avium) "Lapins" and "Sweetheart // Plant Cell, Tissue and Organ Culture. Netherlands. 2004. Vol. 78. P. 173-181.

41. Gentile A., Monticelli S., Damiano C. Adventitious shoot regeneration in peach // Plant Cell Reports. 2002. Vol. 20. P. 1011-1016.

42. Takashina T., Nakano H., Kato R. Efficient plant regeneration culture from leaf explants of in vitro-grown sweet cherry // Acta Horticulturae: XXVI International Horticultural Congress: Genetics and Breeding of Tree Fruits and Nuts. Р. 622.

43. Burgos L., Alburquerque N. Ethylene inhibitors and low kanamycin concentrations improve adventitious regeneration from apricot leaves // Plant Cell Reports. 2003. Vol. 21. P. 1167-1174.

44. Hammatt N., Grant N. J. Shoot regeneration from leaves of Prunus serotina Ehrh. (black cherry) and P. avium L. (wild cherry) // Plant Cell Reports. 1998. Vol. 17. P. 526-530.

45. Grant Neil J., Hammatt Neil. Adventitious shoot development from wild cherry (Prunus avium L.) leaves // New Forests. Netherlands. 2000. Vol. 20. P. 287-295.

46. James D. E., Pоssеу A. J., Ma1hоtrо S. B. Organogenesis in callus derived from stem and leaf tissues of apple and cherry rootstocks // Plant Cell Tissue Organ Cult. 1984. Vol. 3. № 4.

47. Тюленев В. М., Нафталиев Н. М., Осипова Л. В., Расторгуев С. Л. Клональное микроразмножение ценных генотипов плодовых культур // Тезисы докладов Международной конференции «Биология культивируемых клеток и биотехнология 2». Новосибирск, 1988. С. 320.

48. Jones O. P., Jacqueline A. Gayner and Watkins R. Plant regeneration from callus tissue cultures of the cherry rootstook Colt (Prunus avium x P. pseudocerasus) and the apple root-stook M. 25 (Malus pumila) // The Journal of Horticultural Science. England. 1984. Vol. 59. № 4. P. 463-467.

49. Tang Haoru, Ren Zhenglong, Krczal Gabi. Somatic embryogenesis and organogenesis from immature embryo cotyledons of three sour cherry cultivars (Prunus cerasus L.) // Scientia Horticulturae. 2000. Vol. 83. P. 109-126.

V. Rogovaia, M. Gvozdev

IN VITRO CLONAL MICROPROPAGATION OF STONE-FRUIT CULTURES

The review is focused on principal stages and methods of in vitro clonal micropropagation of stone-fruit cultures. Special emphasis is laid on auxiliary bud propagation technique and method of adventitious shoot regeneration from leaf explants of sour cherry, cherry, peach and apricot. Some aspects ofplant material testing for virus infections have been reviewed as well as certain problems of genetic stability preservation depending on propagation model.

Клетки стареют не только in vivo, но и in vitro. Более того, в условиях in vitro особенно отчётливо проявляется роль гипероксии – естественного и, по-видимому, единственного в этих условиях фактора их старения.
1.8.1. Как известно, выращивание клеток вне организма проводится в специальных сосудах (флаконах) при атмосферном давлении и, следовательно, при рО2, значительно превосходящем значения, которые устанавливаются в организме в норме. Обычно в инкубационной жидкости рО2 близко к рО2 воздуха. Молекулы О2 через тонкий слой питательной среды во флаконе свободно диффундируют к клеткам и внутри них устанавливается высокое рО2, невозможное in vivo или, во всяком случае, превышающее допустимые значения.
С точки зрения кислородно-перекисной концепции старения, условия in vitro представляются более чем подходящими для изучения процесса старения клеток, так как в этих условиях он протекает интенсивнее, в ускоренном темпе и, что очень важно, в «чистом» виде, т.е. при полном отсутствии какого-либо влияния систем организма, которое имеет место при старении in vivo. Данное обстоятельство сразу ставит многие теории старения в разряд второстепенных или сугубо умозрительных, поскольку возрастные изменения происходят или могут происходить и без реализации постулируемых в них положений. Придание нами столь важного значения феномену старения клеток in vitro связано с тем, что именно в этих «простых» условиях можно будет скорее и с меньшими трудностями познать физико-химические основы старения и сущность биологии этого процесса вообще.
В настоящее время, однако, не существует единого мнения по поводу общности причин и механизмов старения клеточных культур и старения клеток в составе многоклеточного организма, о чем свидетельствуют противоположные точки зрения в литературе (Капитанов, 1986). Канунго (Kanungo, 1982), например, хотя и считает, что причина старения организма состоит в старении его клеток, вместе с тем полагает: «условия in vitro не соответствуют физиологическим и свойства клеток могут оказаться измененными. Если исследования in vitro и дают некоторую полезную информацию о самой клетке, то они имеют ограниченную ценность, когда речь идёт о старении организма в целом». С приведенным высказыванием можно согласиться лишь отчасти. Действительно, старение клеток in vitro не может отразить весь сложный спектр возрастных изменений, происходящих в целостном организме на всех уровнях и, к тому же, в немалой степени определяемых системой различных связей в нем, в том числе обратных. Применительно к условиям in vitro теряет смысл ряд принципов старения, проявляющихся на организменном уровне (см. п. 1.1.2), но некоторые из них продолжают действовать и в клеточных культурах. Таковы, в частности, многоочаговость процесса старения, т.е. развитие повреждений в различных частях клетки или в различных ее молекулярных циклах, и гетерохронность старения среди клеток одного культивируемого типа. Кроме того, в этих условиях принципы необратимости, нерегулируемости и непрерывности старения клеток должны, очевидно, проявляться более явственно.
Указанные выше недостатки при изучении старения клеток вне организма не представляются принципиальными, если иметь в виду, что одна из основных задач геронтологии состоит в установлении главного первичного фактора ок-ружающей среды, предопределяющего старение всех живых организмов. Таким фактором, как мы полагаем, является гипероксия в земной атмосфере, поэтому жизнь клеток в условиях in vitro можно считать удобной экспериментальной моделью для изучения действия именно указанного физического фактора на их старение. Обычное 18-21 %-ное содержание О2 в воздухе и соответственно высокие уровни дисбаланса Δ (ПО – АО) и пероксигеназных процессов оказывают угнетающее действие на субклеточные элементы, на нормальные физиологические и метаболические процессы. В результате последние постепенно затухают, и большинство клеток погибает вследствие окислительного цитолиза или по кислородно-перекисному механизму апоптоза (см. п. 7.1).
Фактов, указывающих на ведущую роль избыточных рО2, АФК и ПОЛ в снижении выживаемости клеток в условиях in vitro и протекторного действия различных антиоксидантных факторов, более, чем достаточно (Branton et al., 1998; Drukarch et al., 1998; Heppner et al., 1998). К числу последних отнесен недавно и L-карнозин. Добавление физиологических концентраций его к стандартным средам увеличивает продолжительность жизни фибробластов челове-ка in vitro и замедляет процессы физиологического старения в них. Длительно пассируемые на обычных средах клетки после переноса их в карнозин-содер-жащую среду проявляли омолаживающий эффект. Оптический же изомер D-карнозин не обладал указанными свойствами (Холлидей, МакФарланд, 2000) В то же время в ходе длительного культивирования определённый процент клеток не только не деградирует, но и, адаптируясь к токсическим окислительным условиям, «добивается» того, что внутриклеточный параметр Δ (ПО – АО) не повышается до высоких значений ΔА2 или ΔЦ, но может остановиться на несколько меньшем уровне ΔК, необходимом для их злокачественной трансформации. Случаи «спонтанной» малигнизации клеток в культуре и возможный ее механизм обсуждаются нами отдельно в главе 4.
1.8.2. Приведенные выше соображения можно считать частью наших теоретических положений о причинах и следствиях старения клеток in vitro. Для подтверждения и развития этих положений естественно привлечь некоторые уже известные факты, содержание и смысл которых легко могут быть «вписаны» в кислородно-перекисную концепцию старения клеток. Начнем с того, что вышеописанные обычные условия культивирования клеток, являющиеся для них токсическими, могут быть смягчены путем искусственного снижения концентрации О2 в газовой среде. При этом угнетающее действие гипероксии и скорость старения клеток должны снизиться. Следует также иметь в виду, что такая известная биологическая константа, как лимит Хейфлика, в действительности оказалась переменной величиной, зависящей от содержания О2 в газовой среде, причем в условиях оксидативного стресса этот лимит уменьшается, а при снижении рО2, напротив, возрастает (Chen et al., 1995).
Действительно, пребывание культуры фибробластов в атмосфере с пониженным содержанием О2 (10 %) удлиняет срок их жизни на 20-30 %. То же происходит и с клетками легких человека и мышей (Packer, Walton, 1977). Период пролиферативной жизнеспособности диплоидных фибробластов IMR90 человека с различными исходными уровнями удвоения популяции увеличива-ется при снижении содержания О2 в среде до 1,6 или 12 %. Этот период при 1 % О2 возрастает на 22 %, а возвращение культур из среды с 1 % О2 в среду с 20 % О2 быстро развивает их старение. В культуре диплоидных фибробластов от больного синдромом Вернера (раннее старение) продолжительность репликативной жизнеспособности также возрастает при снижении рО2 (Saito et al., 1995). Замедление старения культивируемых хондроцитов куриного эмбриона показано при 8 %-ном содержании О2 в атмосфере по сравнению с контролем (18 %), причём опытные клетки дольше сохраняли признаки «молодых», имели более высокую скорость пролиферации (Nevo et al., 1988). Под влиянием различных антиоксидантов скорость пролиферации клеточных культур также уве-личивается, а старение их замедляется (Packer, Walton, 1977; Обухова, 1986), что подтверждает уже сказанное выше: явно избыточное действие оксидантов подавляет пролиферацию клеток и обусловливает ускоренное их старение.
В экспериментах с клеточными культурами сравнительно легко проверить также действие О2-зависимого механизма регуляции количества дыхательных ферментов (Murphy et al., 1984; Suzuki et al., 1998) и митохондрий (Озернюк, 1978). Согласно этому механизму, при плавном и медленном возрастании уро-вня гипероксии содержание таких ферментов и число митохондрий должны постепенно нарастать, а при гипоксии, наоборот, – падать. Действительно, при выращивании культуры фибробластов на среде с пониженным содержанием О2 концентрация цитохромов значительно снижается (Pius, 1970). Здесь, безусловно, задействован объективный процесс адаптации дыхательной системы к внутриклеточному уровню рО2. Однако в данном феномене не меньшее значение имеет скорость адаптации, от которой будет зависеть и интенсивность старения культивируемых клеток. Кажется очевидным, что в процессе биологической эволюции многоклеточный организм приспосабливался к постепенному нарастанию рО2 в земной атмосфере также постепенно. При этом внутри клеток самым эффективным можно считать «митохондриальный» механизм адаптации: количество ферментов дыхательной цепи и самих митохондрий варьируется самоорганизующейся системой так, чтобы оно обеспечивало целостность и относительно нормальное функционирование клеток при изменениях внутриклеточного рО2 в определённых эволюционно апробированных уже пределах.
Совсем иная ситуация складывается при быстром перенесении клеток из живого организма в условия in vitro. Резкий перевод их в состояние гипероксии равносилен нанесению им значительного скачкообразного возмущающего воз-действия, к которому они, вообще говоря, не подготовлены. Как же реагирует первичная клеточная культура на такое возмущение? По-видимому, на протяжении определенного начального периода культуральная среда является для клеток «стрессовой», а состояние самих клеток в этот период – шоковым. Затем какое-то время затрачивается на подготовку и проведение возможных в этих экстремальных условиях адаптивных «мероприятий» антиоксидантного характера. Вероятно, за счёт последних на первых порах удается не только избежать окислительной деградации, но и создать условия для стимуляции пролиферативного процесса, снизив высокий вначале явно «цитотоксический» внутриклеточный дисбаланс ΔЦ (ПО – АО) до необходимого для окислительного митогенеза. Однако и эта стадия в жизни первичной культуры не может не ограничиваться непрерывно угнетающей ее гипероксической средой. В данной ситуации начинает инактивироваться сам адаптивный механизм, соответственно снижается наращивание антиоксидантной системы, а в последующем про-исходит и регрессия последней. При высоком уровне ПОЛ, прежде всего, повреждаются митохондрии (см. п. 1.3), количество которых продолжало бы возрастать как приспособительный акт в случае постепенного повышения рО2 в газовой среде.
Неспособность адаптивных механизмов клетки к быстрой и полной нейтрализации внезапно возникшей гипероксии, с одной стороны, и высокая уязвимость митохондриального звена при пероксидативных стрессах, с другой, определяют необратимый процесс дегенерации клеток после возникновения в них «критического уровня» повреждений. Важно здесь ещё раз отметить: деструктивные изменения именно в митохондриях как основных потребителей О2 и в этом смысле как главной, антикислородной ступени защиты в антиоксидантной системе клетки не оставляют надежд на выживание для большинства клеток в жестких условиях in vitro, поскольку в этом случае расстраивается сам адап-тивный механизм снижения внутриклеточного рО2 и уровня ПОЛ. Приведенные соображения полностью согласуются с первичной ролью изменений митохон-дрий в инициации механизма старения, постулированной, правда, примени-тельно к культивируемым in vitro фибробластам (Kanungo, 1980).
Пероксидативный стресс и токсический эффект в условиях in vitro могут быть ещё более усилены, если в культуральную среду ввести катализаторы ПОЛ, например ионы Fe2+ или Cu2+. Действительно, добавление в среду культивирования сульфата меди в концентрации 60 мг/л приводило к достоверному снижению средней продолжительности жизни коловраток на 9 %, а также к существенно более заметному, чем в контроле, нарастанию количества MDA. Авторы этого эксперимента (Enesco et al., 1989) логично полагают, что сокра-щение продолжительности жизни происходит вследствие ускорения ионами меди процессов генерации свободных радикалов. Указанная концентрация сульфата меди оказалась оптимальной, так как бoльшие (90 и 180 мг/л) были слишком токсичными для коловраток, а меньшая (30 мг/л) – малоэффективной.
Таким образом, необратимые ускоренные старение и окислительная деградация клеток при резкой смене среды обитания с in vivo на in vitro являются следствием недостаточной готовности их без серьезных негативных последствий воспринять столь крутое усиление кислородного воздействия. Если такой резкий перевод в новые условия заменить «мягким», например, многоступенчатым и растянутым во времени, то можно ожидать, что присущая клеткам способность адаптироваться к постепенно нарастающей гипероксии в этом случае реализуется в полной мере. Более того, в принципе таким способом можно добиться адаптации клеток не только к обычному 18-21 %-ному уровню О2 в атмосфере, но и к существенно превышающим его искусственно создаваемым гипероксическим средам. В подтверждение сказанному сошлемся на весьма убедительные факты, полученные Велком с соавт. (Valk et al., 1985). В результате постепенной адаптации к возрастающей концентрации О2 ими получена линия клеток яичника китайского хомячка, устойчивая к высокому содержанию О2 и способная пролиферировать даже при 99 % О2 в атмосфере. К столь значительной гипероксии и зависимым от нее процессам оказались адаптированными все ступени защиты – антикислородная, антирадикальная и антиперекисная (подробнее об этих результатах см. в главе 4).
1.8.3. Изложенные соображения об особенностях изменения прооксидан-тно-антиоксидантного дисбаланса в культивируемых клетках как основного действующего фактора их старения и трансформации можно условно представить графически (см. рис. 11). На кривой 1, отражающей указанные изменения при быстром перемещении клеток в среду in vitro, выделены три последо-вательные во времени этапа, которые, похоже, соответствуют известным в литературе адаптационной (латентной) фазе, фазе логарифмического роста и стационарной фазе. При этом старение клеточных культур обычно связывается с процессами в стационарной фазе, где со временем они претерпевают различные изменения, сходные с наблюдающимися в клетках в составе стареющего организма (Капитанов, 1986; Хохлов, 1988). В частности, при старении клеток in vitro изменяются ферменты, происходит их анэу- и полиплоидизация (Re-macle, 1989). Как и клетки in vivo, культивируемые клетки по мере старения накапливают липофусциновые гранулы (Обухова, Эмануэль, 1984), указывая на очевидное протекание перекисных процессов и окислительные нарушения в структуре липидов и белков. Эти и ряд других фактов так или иначе могут быть согласованы с гипотезой о кислородно-перекисном (свободнорадикальном) ме-ханизме старения. Более же всего, в пользу такого механизма свидетельствуют данные о том, что при повышении концентрации антиоксидантов продолжительность жизни клеток in vitro больше, а при понижении – меньше, чем в контроле. Такие результаты получены, например, при изменении содержания GSH в фибробластах человека (Shuji, Matsuo, 1988), каталазы и SOD – в куль-тивируемых нейронах (Drukarch et al., 1998).
Что касается пологих и тносительно плавно возрастающих кривых 2 на рис. 11, то такой характер их объясняется тем, что за каждым небольшим искусственно создаваемым приращением прооксидантной составляющей дисбаланса Δ (ПО – АО) в клетке следует с некоторым запаздыванием соответствующее адаптивное приращение в ней антиоксидантной компоненты. Многократ-ное повторение этой акции и обеспечивает приспособление и выживаемость клеток при постепенном, ступенчатом повышении уровня гипероксии.
В обоих указанных случаях обратим внимание на варианты, ведущие к так называемой «спонтанной» малигнизации клеток (см. главу 4). Этот феномен, с нашей точки зрения, может реализовываться лишь в тех клетках, где дисбаланс достигает значений ΔК, устойчиво удовлетворяющих неравенству (см. п.1.1.2)
ΔП (ПО – АО) а точнее, с учетом «апоптозных» дисбалансов, – соотношению (см. п. 7.1.1)
ΔА1 (ПО – АО) С помощью подобных процедур, в конечном счете, формируются перевивные линии трансформированных и опухолевых клеток, способных к длительному существованию вне организма. В контексте же рассматриваемых нами проблем более важно определиться с подходом к исследованию взаимосвязи старения и канцерогенеза. Один из них, а именно изучение самого процесса появления опухолевых клеток в ходе старения нормальных клеточных культур (Witten, 1986), представляется наиболее естественным и потому предпочтительным

подходом. При установлении дисбаланса Δ (ПО – АО) в промежутке между ΔК и ΔЦ клетки могут подвергаться апоптозу типа А2 (см. п. 7.1.1).
Согласно теломерной теории, репликативное старение клеток, в том числе и в условиях in vitro, связано с укорочением теломер после каждого митоза, вплоть до некоторой минимальной длины, результатом чего является утрата такими клетками способности к делению (см. п. 1.4.3 и 1.4.4). Анализ известной литературы по этому вопросу показывает, что данный постулат в некоторых случаях не подтверждается. Примером тому служат исследования Кармана и соавт. (Carman et al., 1998), проведенные на диплоидных эмбриональных кле-тках сирийского хомячка (SHE). Эти клетки после 20-30 циклов удвоения прекращали пролиферацию, теряли способность вступать в S-фазу после стимуляции сывороткой. В то же время клетки SHE экспрессировали теломеразу в течение всего репликативного жизненного цикла, а средний размер теломер не уменьшался. Выходит, что in vitro клетки могут иногда стареть по механизмам, не связанным с потерей теломер.
Как представляется нам, в указанном случае свои коррективы вносят условия гипероксии в среде культивирования. Если в состоянии умеренно повышенного уровня АФК и пероксидация выполняют нередко позитивные функции, активируя отдельные этапы прохождения митогенного сигнала, реплика-ции, транскрипции и иных процессов (об этом говорилось в ряде предыдущих параграфов и упоминается в некоторых последующих), то в случае интенсивного окислительного стресса неизбежны и негативные последствия. Например, часть макромолекул, в том числе участвующих в митогенезе, может быть модифицирована, что, независимо от активности теломеразы и длины теломер, дол-жно ингибировать пролиферацию и/или индуцировать какие-то другие нарушения, вплоть до приводящих к гибели клеток.
Как бы там ни было, две причины старения клеток in vitro – накопление ошибок в условиях содержания их в культуре и укорочение теломер – остаются все же наиболее вероятными. Полагают, что в обоих случаях активируются системы белков р53 и Rb, а при нарушении их функции происходит трансформация клеток (Sherr, DePinho, 2000). В более общем плане нам видится следующее: в токсических гипероксических условиях культивирования норма-льные клетки, старея, претерпевают, скорее всего, апоптоз А1, а опухолевые клетки – апоптоз А2. В случае неполадок в механизме апоптоза первые подвергаются неопластической трансформации, вторые же – окислительному цитолизу (см. п. 7.1.1).
Дополнительной причиной, способствующей усилению процессов окислительной деструкции в клетках in vitro, может считаться и тепло, как постоянно действующий фактор окружающей среды. Действительно, с помощью высоко-чувствительного метода (описание его приводят авторы Брусков и др., 2001) было показано, что под действием тепла в водных растворах генерируются АФК. В результате тепловой активации растворенного в воде атмосферного О2 протекает последовательность реакций
О2 → 1О2 → О → НО2˙ → Н2О2 → ОН˙.
Образующиеся АФК, по-видимому, и содействуют тепловому повреждению ДНК и других биологических молекул путём их «автоокисления».
Наконец, отметим еще один способ интенсификации процесса старения клеток в условиях in vitro с помощью процедуры аноксии – реоксигенации, результаты которой, по нашему мнению, наиболее выражено отражают суть кислородно-перекисной модели старения. Основу механизма старения в данном случае составляют два принципиальных эффекта: адаптивное сокращение (ослабление) митохондриальной базы в период аноксии или гипоксии (см. выше); значительное усиление ПОЛ и других процессов окислительной деструкции при последующей реоксигенации вследствие резкого повышения рО2 (относительно состояния аноксии) и невозможности быстрой утилизации избыточного О2 «аноксическими» митохондриями. Степень пероксидативного стресса и, сле-довательно, скорость старения клеток будут зависеть от длительности пребывания их в состоянии аноксии: чем продолжительнее этот период, тем лучше сможет адаптироваться митохондриальная база к низкому уровню рО2 и тем значительнее будет урон клеток после устранения ишемии.
Примером реализации старения клеток по указанному «сценарию» может служить следующий факт. Гепатоциты, выделенные у крыс разного возраста, подвергали 2-часовой аноксии и 1-часовой реоксигенации. Установлено, что в реоксигенационной фазе гепатоциты продуцируют большое количество кислородных радикалов, ответственных за повреждение их мембран и за другие при-частные к старению структурно-функциональные изменения, причем старые клетки были чувствительнее к реперфузионной травме (Gasbarrini et al., 1998). Подобного рода факты рассматриваются нами и в главе 4 в связи с обсужде-нием механизма старения и «спонтанной» малигнизации клеток в культуре.

Для экспериментов в условиях in vitro использована цельная кровь 11 клинически здоровых людей-добровольцев и 36 больных с термической травмой.

2.3. Методы исследования

2.3.1. Иммунологические методы исследования

2.3.1.1. Оценка спонтанной и индуцированной секреторной активности мононуклеаров периферической крови в условиях in vitro

Объектом исследования служила венозная кровь, взятая у здоровых людей-добровольцев и у больных с термической травмой натощак, в утренние часы. Кровь стабилизировали гепарином из расчета 10 ЕД/мл. Фракцию мононуклеаров выделяли по методу на градиенте плотностью 1,077 г/мл при центрифугировании (400 g 45 минут) с использованием фиколла и верографина. Для формирования среды плотностью 1,077 г/см 3 использовали 9% (масса/объем) раствор фиколла-400 («ДиаМ», Москва) и 60 % официнальный урографин («Schering», Германия). Опалесциирующее кольцо мононуклеаров забирали из интерфазы пастеровской пипеткой и трижды центрифугированием отмывали средой 199 путем при 689g в течение 5-7 минут. Отмытые и ресуспендированные клетки доводили до концентрации 1 10 7 клеток/мл. Их жизнеспособность оценивали путем окраски их 0,2 % раствором трипанового синего, жизнеспособность составляла не менее 98%.

Культивирование клеток проводили при 5% содержании углекислого газа в воздушной среде при температуре 37 0 С в течение 1 часа. В стерильных условиях содержание ячеек было аспирировано, с последующим двухкратным промыванием от неприлипших клеток раствором Хенкса. Затем в каждую ячейку добавляли по 250 мкл 10 % эмбриональной телячьей сыворотки и 80 мкг/мл гентамицина. Далее клетки культивировали в течение 72 часов, в условиях термостата при 5% содержания углекислого газа в воздушной среде, при температуре 37 0 С, в супернатанте определяли концентрацию цитокинов.

2.3.1.2. Исследование врожденного иммунитета

Определение количества лейкоцитов и лейкоцитарной формулы. Количество лейкоцитов в периферической крови определяли общепринятым меланжерным методом в камере Горяева. Лейкоцитарную формулу подсчитывали в мазках крови, фиксированных метиловым спиртом и окрашенных азур II-эозином по Романовскому-Гимзе . Подсчитывали 200 лейкоцитов с дифференциацией эозинофилов, базофилов, метамиелоцитов, палочкоядерных и сегментоядерных нейтрофилов, лимфоцитов, моноцитов. Их количество выражали в относительных (%) и абсолютных ( 10 9 /л) величинах.

Функциональную активность фагоцитов исследовали по показателям НСТ-теста и фагоцитозу.

Исследование поглотительной способности фагоцитов периферической крови проводили на модели поглощения частиц латекса. Для оценки фагоцитоза 200 мкл крови смешивали с 20 мкл взвеси частиц монодисперсного (диаметр 1,7 мкм) полистерольного латекса. После 60 минут инкубации при температуре 37 0 С из суспензии готовили препараты, которые высушивали, фиксировали метанолом и окрашивали азур II – эозином по Романовскому-Гимзе. С помощью иммерсионной микроскопии учитывали активность фагоцитоза – % клеток, захвативших хотя бы одну частицу латекса, интенсивность фагоцитоза – число поглощенных микросфер латекса в 100 подсчитанных клетках и фагоцитарное число – число поглощенных микросфер латекса на один фагоцит.

НСТ-тест проводили, учитывая интенсивность восстановления фагоцитами нитросинего тетразолия (НСТ) в его нерастворимую форму - диформазан по методу А.Н. Маянского и М.Е. Виксмана (1979). Проводили спонтанный и индуцированный НСТ-тест.

В пробирки с 0,2 мл крови добавляли 0,1 мл 0,2% раствора стандартно разведенного нитросинего тетразолия в 0,1 М фосфатном буфере (рН 7,4). Для оценки индуцированного НСТ-теста в каждую лунку добавляли 20 мкл суспензии частиц монодисперсного (диаметр 1,7 мкм) полистерольного латекса (индуцированная серия) или 20 мкл 0,9% NaCl (спонанная серия). После 30-минутной инкубации при температуре 37 0 С к реакционной смеси добавляли 3 мл 0,1 % соляной кислоты для остановки реакции. Пробирки центрифугировали при 1000 об./мин в течение 5 мин. Надосадочную жидкость сливали, из осадка готовили мазки. После сушки препараты фиксировали метанолом и 5минут окрашивали 0,1% водным раствором сафранина. С помощью микроскопии при увеличении 90х10х1,5 определяли % клеток, восстанавливающих НСТ, и интенсивность реакции по активности восстановления НСТ, для чего НСТ-позитивные клетки делили на 3 группы:

1 – клетки с гранулами диформазана в цитоплазме общей площадью менее 1/3 площади ядра;

2 – клетки с гранулами диформазана в цитоплазме более 1/3 площади ядра;

3 – клетки с гранулами диформазана, превышающими размеры ядра.

Для получения коэффициента интенсивности реакции количество клеток первой группы, выраженное в процентах, умножали на 1, второй группы – на 2, третьей – на 3, результаты суммировали и делили на 100.

Поделиться